AI Article Synopsis

  • The study aimed to enhance the efficiency of brain arteriovenous malformation (bAVM) treatment planning by developing a deep learning approach for automatic detection and segmentation of bAVM on Time-of-flight magnetic resonance angiography.
  • A total of 221 bAVM patients, aged 7-79, provided data for training, validation, and testing of the model using YOLOv5, YOLOv8 for detection, and U-Net, U-Net++ for segmentation.
  • Results indicated that models with pretraining and augmentation achieved optimal detection performance, with U-Net++ notably improving segmentation accuracy through a random dilation mechanism, resulting in significant statistical differences in performance metrics.

Article Abstract

Background: The delineation of brain arteriovenous malformations (bAVMs) is crucial for subsequent treatment planning. Manual segmentation is time-consuming and labor-intensive. Applying deep learning to automatically detect and segment bAVM might help to improve clinical practice efficiency.

Purpose: To develop an approach for detecting bAVM and segmenting its nidus on Time-of-flight magnetic resonance angiography using deep learning methods.

Study Type: Retrospective.

Subjects: 221 bAVM patients aged 7-79 underwent radiosurgery from 2003 to 2020. They were split into 177 training, 22 validation, and 22 test data.

Field Strength/sequence: 1.5 T, Time-of-flight magnetic resonance angiography based on 3D gradient echo.

Assessment: The YOLOv5 and YOLOv8 algorithms were utilized to detect bAVM lesions and the U-Net and U-Net++ models to segment the nidus from the bounding boxes. The mean average precision, F1, precision, and recall were used to assess the model performance on the bAVM detection. To evaluate the model's performance on nidus segmentation, the Dice coefficient and balanced average Hausdorff distance (rbAHD) were employed.

Statistical Tests: The Student's t-test was used to test the cross-validation results (P < 0.05). The Wilcoxon rank test was applied to compare the median for the reference values and the model inference results (P < 0.05).

Results: The detection results demonstrated that the model with pretraining and augmentation performed optimally. The U-Net++ with random dilation mechanism resulted in higher Dice and lower rbAHD, compared to that without that mechanism, across varying dilated bounding box conditions (P < 0.05). When combining detection and segmentation, the Dice and rbAHD were statistically different from the references calculated using the detected bounding boxes (P < 0.05). For the detected lesions in the test dataset, it showed the highest Dice of 0.82 and the lowest rbAHD of 5.3%.

Data Conclusion: This study showed that pretraining and data augmentation improved YOLO detection performance. Properly limiting lesion ranges allows for adequate bAVM segmentation.

Level Of Evidence: 4 TECHNICAL EFFICACY STAGE: 1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.28795DOI Listing

Publication Analysis

Top Keywords

deep learning
12
magnetic resonance
12
resonance angiography
12
brain arteriovenous
8
time-of-flight magnetic
8
bavm
5
learning detection
4
detection segmentation
4
segmentation brain
4
arteriovenous malformation
4

Similar Publications

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models.

PLoS Comput Biol

January 2025

Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America.

Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources.

View Article and Find Full Text PDF

As the global economy expands, waterway transportation has become increasingly crucial to the logistics sector. This growth presents both significant challenges and opportunities for enhancing the accuracy of ship detection and tracking through the application of artificial intelligence. This article introduces a multi-object tracking system designed for unmanned aerial vehicles (UAVs), utilizing the YOLOv7 and Deep SORT algorithms for detection and tracking, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!