Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Network robustness refers to the ability of a network to continue its functioning against malicious attacks, which is critical for various natural and industrial networks. Network robustness can be quantitatively measured by a sequence of values that record the remaining functionality after a sequential node- or edge-removal attacks. Robustness evaluations are traditionally determined by attack simulations, which are computationally very time-consuming and sometimes practically infeasible. The convolutional neural network (CNN)-based prediction provides a cost-efficient approach to fast evaluating the network robustness. In this article, the prediction performances of the learning feature representation-based CNN (LFR-CNN) and PATCHY-SAN methods are compared through extensively empirical experiments. Specifically, three distributions of network size in the training data are investigated, including the uniform, Gaussian, and extra distributions. The relationship between the CNN input size and the dimension of the evaluated network is studied. Extensive experimental results reveal that compared to the training data of uniform distribution, the Gaussian and extra distributions can significantly improve both the prediction performance and the generalizability, for both LFR-CNN and PATCHY-SAN, and for various functionality robustness. The extension ability of LFR-CNN is significantly better than PATCHY-SAN, verified by extensive comparisons on predicting the robustness of unseen networks. In general, LFR-CNN outperforms PATCHY-SAN, and thus LFR-CNN is recommended over PATCHY-SAN. However, since both LFR-CNN and PATCHY-SAN have advantages for different scenarios, the optimal settings of the input size of CNN are recommended under different configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2023.3269753 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!