A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session149kq6tkltlisjbmi540sra0v26gmett): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Learning With Incremental Instances and Features. | LitMetric

Learning With Incremental Instances and Features.

IEEE Trans Neural Netw Learn Syst

Published: July 2024

In many real-world applications, data may dynamically expand over time in both volume and feature dimensions. Besides, they are often collected in batches (also called blocks). We refer this kind of data whose volume and features increase in blocks as blocky trapezoidal data streams. Current works either assume that the feature space of data streams is fixed or stipulate that the algorithm receives only one instance at a time, and none of them can effectively handle the blocky trapezoidal data streams. In this article, we propose a novel algorithm to learn a classification model from blocky trapezoidal data streams, called learning with incremental instances and features (IIF). We attempt to design highly dynamic model update strategies that can learn from increasing training data with an expanding feature space. Specifically, we first divide the data streams obtained on each round and construct the corresponding classifiers for these different divided parts. Then, to realize the effective interaction of information between each classifier, we utilize a single global loss function to capture their relationship. Finally, we use the idea of ensemble to achieve the final classification model. Furthermore, to make this method more applicable, we directly transform it into the kernel method. Both theoretical analysis and empirical analysis validate the effectiveness of our algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3236479DOI Listing

Publication Analysis

Top Keywords

data streams
20
blocky trapezoidal
12
trapezoidal data
12
learning incremental
8
incremental instances
8
instances features
8
data
8
feature space
8
classification model
8
streams
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!