Cinnamic Aldehyde Causing Chronic Oral Mucosal Ulcerations.

Dermatitis

From the Division of Dermatology, Washington University School of Medicine, Saint Louis, Missouri, USA.

Published: January 2024

Download full-text PDF

Source
http://dx.doi.org/10.1089/derm.2023.0043DOI Listing

Publication Analysis

Top Keywords

cinnamic aldehyde
4
aldehyde causing
4
causing chronic
4
chronic oral
4
oral mucosal
4
mucosal ulcerations
4
cinnamic
1
causing
1
chronic
1
oral
1

Similar Publications

Valorization of Selected Biomass-Derived Molecules on Leaves-Biotemplated TiO-g-CN Photocatalysts.

Biomimetics (Basel)

November 2024

Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.

Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.

View Article and Find Full Text PDF

Plant volatile aldehydes (PVAs) such as cinnamaldehyde (Cin), citral (Cit), citronellal (Citr), and perillaldehyde (Per) have broad-spectrum antimicrobial activity and show great potential in agricultural sustainable production. However, most PVAs not only have very high volatility but also are easily degradable in environment, which seriously restricts their wide application. To address the inherent problems with PVAs, four prodrugs based on PVAs are fabricated by conjugating individually Cin, Cit, Citr, and Per to sodium bisulfite (Sod) through a simple addition reaction and subsequently self-assembled into nanoparticles (prodrug self-assemblies) in aqueous solutions.

View Article and Find Full Text PDF

Stable Pickering emulsions of cinnamaldehyde were formulated using tannic acid-assisted cellulose nanofibers and applied for mango preservation.

Int J Biol Macromol

December 2024

College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China. Electronic address:

Recent explorations into cinnamaldehyde (CIN) have identified its potential as a natural preservative, particularly when incorporated into active packaging to enhance the shelf-life of fruits and vegetables. This study explores the use of cellulose nanofiber (CNF)-stabilized Pickering emulsions as a novel delivery system for essential oils, demonstrating broad applicability in food preservation strategies. We employ CNF as Pickering stabilizers to effectively emulsify and encapsulate CIN, investigating the influence of tannic acid (TA) concentrations on the stability of these emulsions.

View Article and Find Full Text PDF

pH-responsive antibacterial emulsion gel based on cinnamaldehyde and carboxymethyl chitosan for fruits preservation applications.

Int J Biol Macromol

December 2024

School of Chemistry and Chemical Engineering, Yantai University, Shandong Province, 264005, China. Electronic address:

Although the natural antibacterial agent, cinnamaldehyde, has been extensively studied in the field of food packaging, its water solubility and instability limit its further applications. The controllable responsive release can be achieved through encapsulation in responsive emulsion systems based on carboxymethyl chitosan. Herein, a pH-responsive antibacterial emulsion gel was constructed from cinnamaldehyde-loaded oil-in-water emulsion templates.

View Article and Find Full Text PDF

Phytochemistry and nutraceutical potential of Ceylon Cinnamomum species native to Sri Lanka.

Nat Prod Res

December 2024

Interdisciplinary Centre for Innovations in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka.

Cinnamon is a spice that is renowned for its several medicinal and cosmetic benefits. The research study examined the essential oil content, antioxidant, and anti-inflammatory properties of seven species native to Sri Lanka. Cinnamon bark and leaf samples were used to extract essential oils, methanol, and hexane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!