Abnormal Out-of-Plane Vibrational Raman Mode in Electrochemically Intercalated Multilayer MoS.

Nano Lett

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Published: June 2023

Raman spectroscopy is a powerful technique to probe structural and doping behaviors of two-dimensional (2D) materials. In MoS, the always coexisting in-plane (E) and out-of-plane (A) vibrational modes are used as reliable fingerprints to distinguish the number of layers, strains, and doping levels. In this work, however, we report an abnormal Raman behavior, i.e., the absence of the A mode in cetyltrimethylammonium bromide (CTAB)-intercalated MoS superlattice. This unusual behavior is quite different from the softening of the A mode induced by surface engineering or electric-field gating. Interestingly, under a strong laser illumination, heating, or mechanical indentation, an A peak gradually appears, accompanied by the migration of intercalated CTA cations. The abnormal Raman behavior is mainly attributed to the constraint of the out-of-plane vibration due to intercalations and resulting severe electron doping. Our work renews the understanding of Raman spectra of 2D semiconducting materials and sheds light on developing next-generation devices with tunable structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c01543DOI Listing

Publication Analysis

Top Keywords

out-of-plane vibrational
8
abnormal raman
8
raman behavior
8
raman
5
abnormal out-of-plane
4
vibrational raman
4
raman mode
4
mode electrochemically
4
electrochemically intercalated
4
intercalated multilayer
4

Similar Publications

Chromophores incorporated into rigid polymer matrices may exhibit novel photophysical properties distinct from those in liquid solutions. In this work, we explored the decay path of the second ππ* state (2ππ*) of riboflavin in poly(vinyl alcohol) (PVA) solutions and films with various acidities. Highly efficient internal conversion from 2ππ* to the lowest ππ* state (1ππ*) induced by slight in-plane motion is demonstrated in all PVA solutions and films, irrespective of environmental acidity and rigidification.

View Article and Find Full Text PDF

Precise description of the interaction between molecular oxygen and metal surfaces is one of the most challenging topics in quantum chemistry. In this work, we use low-temperature scanning tunneling microscopy (STM) to identify and characterize an adsorption state of molecular oxygen that coordinates to three Ag atoms (μ) on Ag(100). Surprisingly, μ-O cannot be identified as a stable configuration with generalized gradient approximation (GGA)-level density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Detecting the saddling deformations in nickel meso-phenyl substituted porphyrins using low-frequency Raman characteristic peaks.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China. Electronic address:

The out-of-plane (OOP) deformations of metalloporphyrins macrocycle are closely related to their biological functions, and Raman spectroscopy is a powerful tool for investigating OOP deformations. However, due to the interplay of electronic structure, substituents, porphyrin macrocycle in-plane (IP) and OOP deformations, it is challenging to measure the OOP deformations directly, or, establish a confirmative correlation between the frequency shifts of characteristic peaks and specific OOP deformation changes. In this work, we first selected the model porphyrin Ni-P and employed DFT calculations to explore the relationship between the ruffling and saddling deformation changes and their corresponding Raman spectral differences.

View Article and Find Full Text PDF

Emergent superconductivity driven by Van Hove singularity in a Janus MoPS monolayer.

Phys Chem Chem Phys

January 2025

School of Physics and Electronics, Hunan University, Changsha 410082, China.

Two-dimensional (2D) Janus structures with the breaking of out-of-plane mirror symmetry can induce many interesting physical phenomena, and have attracted widespread attention. Herein, we propose a MoPS monolayer with mirror asymmetry, identified by first-principles structural search calculations, which demonstrates high thermodynamic and dynamic stability. Our findings reveal that Mo 4d-orbitals dominate the metallicity, significantly enhancing the density of states near the Fermi level due to Van Hove singularities (VHSs), leading to the existence of phonon-mediated superconductivity.

View Article and Find Full Text PDF

All-angle unidirectional flat-band acoustic metasurfaces.

Nat Commun

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.

Flat bands have empowered novel phenomena such as robust canalization with strong localization, high-collimation and low-loss propagation. However, the spatial symmetry protection in photonic or acoustic lattices naturally forces flat bands to manifest in pairs aligned at an inherently specific angle, resulting in a fixed bidirectional canalization. Here, we report an acoustic flat-band metasurface, allowing not only unidirectional canalization at all in-plane angles but also robust tunability in band alignment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!