Acute high-dose alcohol consumption can lead to oxidative stress, which can cause harm to organs. In this study we aim to determine whether administering boric acid (BA) can protect certain organs (liver, kidney, and brain) from the damaging effects of alcohol by reducing oxidative stress. We used 50 and 100 mg/kg of BA. Thirty-two Sprague Dawley (12-14-week-old) male rats in our study were separated into four groups (n=8); control, ethanol, ethanol+50 mg/kg BA, and ethanol+100 mg/kg BA groups. Acute ethanol was given to rats by gavage at 8 g/kg. BA doses were given by gavage 30 min before ethanol administration. Alanine transaminase (ALT) and aspartate transaminase (AST) measurements were made in blood samples. The total antioxidant status (TAS), total oxidant status (TOS), OSI (oxidative stress index) (TOS/TAS), malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were measured to determine the oxidative stress induced by high-dose acute ethanol in the liver, kidney, and brain tissue, and the antioxidant effects of BA doses. According to our biochemical results, acute high-dose ethanol increases oxidative stress in liver, kidney, and brain tissues, while BA reduces the damage in tissues with its antioxidant effect. For the histopathological examinations, hematoxylin-eosin staining was performed. As a result, we found that the effect of alcohol-induced oxidative stress on liver, kidney, and brain tissues was different, and that giving boric acid reduces the increased oxidative stress in tissues due to its antioxidant effect. It was found that 100mg/kg BA administration had a higher antioxidant effect than in the 50mg/kg group.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-023-03699-9DOI Listing

Publication Analysis

Top Keywords

oxidative stress
28
liver kidney
20
kidney brain
20
boric acid
12
effects doses
8
brain tissue
8
alcohol consumption
8
acute high-dose
8
acute ethanol
8
stress liver
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!