A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tumor Microenvironment Mediated Spermidine-Metal-Immunopeptide Nanocomplex for Boosting Ferroptotic Immunotherapy of Lymphoma. | LitMetric

Immunotherapy as an alternative treatment strategy for B-cell lymphoma is undesirable because of tumor heterogeneity and immune surveillance. Spermidine (SPM), as a regulator of the tumor microenvironment (TME), can facilitate the release of damage-associated molecular patterns (DAMPs) from cancer cells, promote immune recognition, and thus alleviate immune surveillance in the TME. Hence, in this work, self-assembled spermidine-based metal-immunopeptide nanocomplexes (APP-Fe NCs; APP is anti-programmed death ligand-1 peptide) with pH-responsive release kinetics were prepared via the flash nanocomplexation (FNC) technique based on the noncovalent interaction between APP-SPM-dextran (DEX) and sodium tripolyphosphate (TPP) and coordination between Fe and TPP. An study suggested that APP-Fe NCs effectively induce strong oxidative stress and mitochondrial dysfunction and subsequently lead to ferroptosis in cells by interfering with homeostasis in lymphoma cells. Further investigation on lymphoma mice models demonstrated that APP-Fe NCs effectively inhibited the growth and liver metastasis of lymphomas. Mechanistically, by triggering ferroptosis in tumor tissues, these spermidine-containing APP-Fe NCs efficiently facilitated the release of DAMPs and ultimately reshaped TME to enhance immunotherapy efficacy in lymphoma. Combined with its good histocompatibility and facile preparation technique, this pH-responsive APP-Fe NCs with regulation on TME may hold potential for cascade amplification on the combinative immunotherapy of lymphoma in the clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c02803DOI Listing

Publication Analysis

Top Keywords

app-fe ncs
20
tumor microenvironment
8
immunotherapy lymphoma
8
immune surveillance
8
ncs effectively
8
lymphoma
6
app-fe
5
ncs
5
tumor
4
microenvironment mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!