Biomimetic scaffolds recreating key elements of the architecture and biological activity of the extracellular matrix have enormous potential for soft tissue engineering applications. Combining appropriate mechanical properties with select biological cues presents a challenge for bioengineering, as natural materials are most bioactive but can lack mechanical integrity, while synthetic polymers have strength but are often biologically inert. Blends of synthetic and natural materials, aiming to combine the benefits of each, have shown promise but inherently require a compromise, diluting down favorable properties in each polymer to accommodate the other. Here, we electrospun a material comprising chitosan, a natural polysaccharide, and polycaprolactone (PCL), one of the most widely studied synthetic polymers used in materials engineering. In contrast to a classical blend, here PCL was chemically grafted onto the chitosan backbone to create chitosan--polycaprolactone (CS--PCL) and then combined further with unmodified PCL to generate scaffolds with discreet chitosan functionalization. These small amounts of chitosan led to significant changes in scaffold architecture and surface chemistry, reducing the fiber diameter, pore size, and hydrophobicity. Interestingly, all CS--PCL-containing blends were stronger than control PCL, though with reduced elongation. In in vitro assessments, increasing the CS--PCL content led to significant improvements in in vitro blood compatibility compared to PCL alone while increasing fibroblast attachment and proliferation. In a mouse subcutaneous implantation model, a higher CS--PCL content improved the immune response to the implants. Macrophages in tissues surrounding CS--PCL scaffolds decreased proportionately to the chitosan content by up to 65%, with a corresponding decrease in pro-inflammatory cytokines. These results suggest that CS--PCL is a promising hybrid material comprising natural and synthetic polymers with tailorable mechanical and biological properties, justifying further development and in vivo evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.3c00553 | DOI Listing |
Nat Commun
January 2025
College of Chemistry, Nankai University, Tianjin, China.
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:
Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Infection Biology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!