Resonance absorption (RA) occurs when a p-polarized electromagnetic wave, obliquely incident on an inhomogeneous plasma, tunnels past its turning point and resonantly excites an electron plasma wave (EPW) at the critical density. This phenomenon is important, for instance, in the direct drive approach to inertial fusion energy and is a particular example of a wider phenomenon in plasma physics known as mode conversion, which is crucial for heating magnetic fusion devices, such as tokamaks, via RF heating. Direct measurement of these RA-generated EPW accelerated hot electrons, with energy in the range of a few tens to a few hundreds of keV, is a challenging task due to the relatively low deflecting magnetic fields needed. The solution described here is a magnetic electron spectrometer (MES) with a continually changing magnetic field, lower at the entrance of the MES and gradually increasing toward the end, that enables the measurement of a wide spectral range of electrons with energies between 50 and 460 keV. Electron spectra taken in a LaserNetUS RA experiment were acquired from plasmas generated by irradiating polymer targets with the combination of an ∼300 ps pulse followed by a series of ten high intensity 50-200 fs duration laser pulses from the ALEPH laser at Colorado State University. The high intensity beam is designed as spike trains of uneven duration and delay pulses in order to modify the RA phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0142238DOI Listing

Publication Analysis

Top Keywords

magnetic field
8
electron spectrometer
8
hot electrons
8
high intensity
8
variable magnetic
4
electron
4
field electron
4
spectrometer measure
4
measure hot
4
electrons range
4

Similar Publications

Polarization Switching from Valence Trapping in an Oxo-Bridged Trinuclear Iron Complex.

J Am Chem Soc

January 2025

Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Switching electric polarization by external stimuli constitutes a technical foundation for various applications. Here, we reported the observation of polarization-switching behavior in an oxo-bridged mixed-valence complex [FeO(piv)(py)] (piv = pivalate, py = pyridine). Detailed variable-temperature Mössbauer spectral analyses unambiguously confirm the occurrence of an electron localization-delocalization transition between two inequivalent Fe sites.

View Article and Find Full Text PDF

Deuterium (H) and phosphorus (P) magnetic resonance spectroscopy (MRS) are complementary methods for evaluating tissue metabolism noninvasively in vivo. Combined H and P MRS would therefore be of interest for various applications, from cancer to diabetes. Loop coils are commonly used in X-nuclei studies in the human body for both transmit and receive.

View Article and Find Full Text PDF

Background: Conventional quantitative MRI (qMRI) scan is time-consuming and highly sensitive to movements, posing great challenges for quantitative images of individuals with involuntary movements, such as Huntington's disease (HD).

Purpose: To evaluate the potential of our developed ultra-fast qMRI technique, multiple overlapping-echo detachment (MOLED), in overcoming involuntary head motion and its capacity to quantitatively assess tissue changes in HD.

Study Type: Prospective.

View Article and Find Full Text PDF

A magnetic field compatible readout circuit for enhanced coincidence time resolution in BGO Cherenkov radiation-based TOF-PET detectors.

Med Phys

January 2025

Molecular Imaging Program, Departments of Radiology, Bioengineering, Physics and Electrical Engineering, Stanford University, Stanford, California, USA.

Background: Developing time-of-flight positron emission tomography/magnetic resonance imaging (TOF-PET/MRI) detectors that exploit prompt Cherenkov photons from bismuth germanate (BGO) crystals for estimating 511 keV photon arrival time.

Purpose: To present a low-noise, high-speed electronic readout circuit design for BGO-based TOF-PET detectors that achieves enhanced coincidence time resolution (CTR) in presence of a strong magnetic field.

Methods: The CTR of a BGO-based TOF-PET test detector employing a high-speed, low-noise electronic readout chain was evaluated in a strong magnetic field produced by a permanent magnet placed directly on top of the circuit.

View Article and Find Full Text PDF

Substantial research over the past two decades has established that magnetic fields affect fundamental cellular processes, including gene expression. However, since biological cells and subcellular components exhibit diamagnetic behavior and are therefore subjected to very small magnetic forces that cannot directly compete with the viscoelastic and bioelectric intracellular forces responsible for cellular machinery functions, it becomes challenging to understand cell-magnetic field interactions and to reveal the mechanisms through which these interactions differentially influence gene expression in cells. The limited understanding of the molecular mechanisms underlying biomagnetic effects has hindered progress in developing effective therapeutic applications of magnetic fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!