AI Article Synopsis

  • Space-time (ST) wave packets, which exhibit dynamic optical properties, can be created by synthesizing multiple frequency comb lines with complex spatial modes that adapt orbital angular momentum (OAM) values.
  • The study explores how changing the number of frequency comb lines and the spatial mode combinations affects the tunability of these ST wave packets, achieving OAM values from +1 to +6 in a short time frame.
  • Simulation results indicate that using more frequency lines can lead to narrower pulse widths for the ST wave packets, and variations in OAM values can create distinct frequency chirps at different times.

Article Abstract

Space-time (ST) wave packets have gained much interest due to their dynamic optical properties. Such wave packets can be generated by synthesizing frequency comb lines, each having multiple complex-weighted spatial modes, to carry dynamically changing orbital angular momentum (OAM) values. Here, we investigate the tunability of such ST wave packets by varying the number of frequency comb lines and the combinations of spatial modes on each frequency. We experimentally generate and measure the wave packets with tunable OAM values from +1 to +6 or from +1 to +4 during a ∼5.2-ps period. We also investigate, in simulation, the temporal pulse width of the ST wave packet and the nonlinear variation of the OAM values. The simulation results show that: (i) a pulse width can be narrower for the ST wave packet carrying dynamically changing OAM values using more frequency lines; and (ii) the nonlinearly varying OAM value can result in different frequency chirps along the azimuthal direction at different time instants.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.472363DOI Listing

Publication Analysis

Top Keywords

wave packets
16
oam values
16
wave packet
12
dynamically changing
12
space-time wave
8
packet carrying
8
changing oam
8
frequency comb
8
comb lines
8
spatial modes
8

Similar Publications

Highly enhanced reactivity of HCl on the Ag/Au(111) alloy surface via rotational quantum state excitation.

J Chem Phys

December 2024

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Rotational excitations of reactants are often considered to have little impact on chemical reactivity compared to the excitations of vibrational modes and translational motion. Here, we reveal a significant influence of the rotational excitation of HCl on its dissociation on an Ag/Au(111) alloy surface. This finding is based on six-dimensional time-dependent wave packet calculations performed on an accurately fitted machine learning potential energy surface.

View Article and Find Full Text PDF

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior.

View Article and Find Full Text PDF

Coherent transient exciton transport in disordered polaritonic wires.

Nanophotonics

June 2024

Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, USA.

Excitation energy transport can be significantly enhanced by strong light-matter interactions. In the present work, we explore intriguing features of coherent transient exciton wave packet dynamics on a lossless disordered polaritonic wire. Our main results can be understood in terms of the effective exciton group velocity, a new quantity we obtain from the polariton dispersion.

View Article and Find Full Text PDF

Conical intersections are ubiquitous in the energy landscape of chemical systems, drive photochemical reactivity, and are extremely challenging to observe spectroscopically. Using two-dimensional electronic spectroscopy, we observe the nonadiabatic dynamics in Wurster's Blue after excitation to the lowest two vibronic excited states. The excited populations relax ballistically through a conical intersection in 55 fs to the electronic ground state potential energy surface as the molecule undergoes an intramolecular electron transfer.

View Article and Find Full Text PDF

Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!