Soliton microresonator frequency combs (microcombs) have recently emerged as an attractive new type of optical comb source with a wide range applications proposed and demonstrated. To extend the optical bandwidth of these microresonator sources, several previous studies have proposed and studied the injection of an additional optical probe wave into the resonator. In this case, nonlinear scattering between the injected probe and the original soliton enables the formation of new comb frequencies through a phase-matched cascade of four-wave mixing processes. In this work, we expand the relevant analyses to consider soliton-linear wave interactions when the soliton and the probe fields propagate in different mode families. We obtain an expression for the phase-matched idler locations as a function of the dispersion of the resonator and the phase detuning of the injected probe. We confirm our theoretical predictions in experiments performed in a silica waveguide ring microresonator.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.475540DOI Listing

Publication Analysis

Top Keywords

injected probe
8
inter-mode soliton
4
soliton linear-wave
4
linear-wave scattering
4
scattering kerr
4
microresonator
4
kerr microresonator
4
microresonator soliton
4
soliton microresonator
4
microresonator frequency
4

Similar Publications

Hyaluronic acid fillers rarely cause potentially devastating occlusive adverse events that require immediate hyaluronidase salvage infiltrations. An exploratory photographic investigation probed whether topical heparin's anticlotting and anti-inflammatory properties could synergize with and enhance the effectiveness of hyaluronidase. Based on heparin pharmacodynamics, the authors explored the rationale for associating topical heparins with hyaluronidase in treating occlusive side effects following accidental intra-arterial hyaluronic acid injections.

View Article and Find Full Text PDF

Aromatase plays a crucial role in the conversion of androgens to oestrogens and is often overexpressed in hormone-dependent tumours, particularly breast cancer. [18F]BIBD-071, which has excellent binding affinity for aromatase and good pharmacokinetics, has potential for the diagnosis and treatment of aromatase-related diseases. The MCF-7 cell line, which is hormone receptor-positive (HR+), was used in the assessment of the novel [18F]-labelled radiotracer [18F]BIBD-071 via positron emission tomography (PET) imaging of an HR+ breast cancer xenograft model.

View Article and Find Full Text PDF

Cardiovascular diseases such as myocardial infarction or limb ischemia are characterized by regression of blood vessels. Local delivery of growth factors (GFs) involved in angiogenesis such as fibroblast blast growth factor-2 (FGF-2) has been shown to trigger collateral neovasculature and might lead to a therapeutic strategy. In vivo, heparin, a sulfated polysaccharide present in abundance in the extracellular matrix (ECM), has been shown to function as a local reservoir for FGF-2 by binding FGF-2 and other morphogens and it plays a role in the evolution of GF gradients.

View Article and Find Full Text PDF

Human glucagon-like peptide-2 (hGLP-2) receptor agonists have a benefit for the treatment of short bowel syndrome (SBS) and potentially other intestinal diseases (e.g., IBD).

View Article and Find Full Text PDF

Gas foam injection offers a viable solution to challenges faced in oil reservoirs, yet ensuring optimal foamability and stability remains a pivotal hurdle in practical field operations. This study presents a novel synthesis procedure to create silica (SiO) Janus nanoparticles (JNPs) and examines their potential to enhance gas foam stability for enhanced oil recovery (EOR) applications. Two variations of SiO JNPs were synthesized via a masking procedure, employing oleic acid and ascorbic acid within a Pickering emulsion, marking a pioneering approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!