Here we demonstrate an inexpensive, simple, and ultra-sensitive refractive index sensor based on a tapered tip optical fiber combined with a straightforward image analysis method. The output profile of this fiber exhibits circular fringe patterns whose intensity distribution dramatically changes even with ultra-small refractive index variations in the surrounding medium. The sensitivity of the fiber sensor is measured using different concentrations of saline solutions with a transmission setup consisting of a single wavelength light source, a cuvette, an objective lens, and a camera. By analyzing the areal changes in the center of the fringe patterns for each saline solution, we obtain an unprecedented sensitivity value of 24,160 dB/RIU (refractive index unit), which is the highest value reported so far among intensity-modulated fiber refractometers. The resolution of the sensor is calculated to be 6.9 ×10. Moreover, we measure the sensitivity of the fiber tip in the backreflection mode using salt-water solutions and obtained a sensitivity value of 620 dB/RIU. This sensor is ultra-sensitive, simple, easy to fabricate, and low-cost, which makes it a promising tool for on-site measurements and point-of-care applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.477288 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!