We demonstrate a free-space optical communication link with an optical transmitter that harvests naturally occurring Planck radiation from a warm body and modulates the emitted intensity. The transmitter exploits an electro-thermo-optic effect in a multilayer graphene device that electrically controls the surface emissivity of the device resulting in control of the intensity of the emitted Planck radiation. We design an amplitude-modulated optical communication scheme and provide a link budget for communications data rate and range based on our experimental electro-optic characterization of the transmitter. Finally, we present an experimental demonstration achieving error-free communications at 100 bits per second over laboratory scales.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.476394DOI Listing

Publication Analysis

Top Keywords

planck radiation
12
free-space optical
8
optical communication
8
harvesting planck
4
radiation free-space
4
optical
4
optical communications
4
communications long-wave
4
long-wave infrared
4
infrared band
4

Similar Publications

Rewriting the Quantum "Revolution".

Stud Hist Philos Sci

December 2024

Freudental Institute, Department of Mathematics, Faculty of Science, Utrecht University, The Netherlands. Electronic address:

This paper is a critical analysis of the structure of the quantum revolution. I consider the factual question of how, historically and theoretically, the classical gave way to the quantum, and I argue for an answer that shows, contra Thomas Kuhn's influential philosophy of science, that it is the logic, and not the sociology and psychology, of research that correctly explains the classical-to-the-quantum paradigm shift. My approach is based not on archival studies but on a careful reading, in their original historical context, of Max Planck's and Albert Einstein's well-known papers; the burden of my argument, which at points will be outspoken, consists, then, in identifying and removing the impediments that prevent us from reading these papers in themselves.

View Article and Find Full Text PDF

Gram-negative bacteria can use the type III secretion system (T3SS) to inject effector proteins into eukaryotic target cells. In this chapter, we describe the application of a light-controlled T3SS, based on the targeted sequestration of an essential dynamic T3SS component with the help of optogenetic interaction switches. This method enables to control the secretion or injection into eukaryotic cells for a wide range of protein cargos with high temporal and spatial precision.

View Article and Find Full Text PDF

Optimizing Acidic Oxygen Evolution with Manganese-Doped Ruthenium Dioxide Assembly.

ACS Appl Mater Interfaces

December 2024

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.

Ruthenium dioxide (RuO) is one of the promising catalysts for the acidic oxygen evolution reaction (OER). However, designing RuO catalysts with good activity and stability remains a significant challenge. In this work, we propose the manganese (Mn)-doped RuO assembly as a catalyst for the OER with improved activity and stability.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

PtRu-based catalysts toward hydrogen oxidation reaction (HOR) suffer from low efficiency, CO poisoning and over-oxidation at high potentials. In this work, an amorphization strategy is adopted for preparation of amorphous SrRuPtOxHy nanobelts (a-SrRuPtOxHy NBs). The a-SrRuPtOxHy NBs have optimized adsorption of intermediates (H and OH), increased number of active sites, highly weakened CO poisoning and enhanced anti-oxidation ability owing to the special amorphous structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!