Dielectric tensor tomography (DTT) enables the reconstruction of three-dimensional (3D) dielectric tensors, which provides a physical measure of 3D optical anisotropy. Herein, we present a cost-effective and robust method of DTT using spatial multiplexing. Exploiting two orthogonally polarized reference beams with different angles in an off-axis interferometer, two polarization-sensitive interferograms were multiplexed and recorded using a single camera. Then, the two interferograms were demultiplexed in the Fourier domain. By measuring the polarization-sensitive fields for various illumination angles, 3D dielectric tensor tomograms were reconstructed. The proposed method was experimentally demonstrated by reconstructing the 3D dielectric tensors of various liquid-crystal (LC) particles with radial and bipolar orientational configurations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.474969DOI Listing

Publication Analysis

Top Keywords

dielectric tensor
12
tensor tomography
8
dielectric tensors
8
dielectric
5
spatially multiplexed
4
multiplexed dielectric
4
tomography dielectric
4
tomography dtt
4
dtt enables
4
enables reconstruction
4

Similar Publications

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

Structural, morphological, mechanical, and electrical studies of N. nucifera fibres.

Int J Biol Macromol

December 2024

Center for Material Science, Vijnana Bhavan, Manasagangotri, University of Mysore, Mysuru 570017, India.

The Powder X-ray diffraction (PXRD) data of Nelumbo Nucifera fibre is utilized to study multifaceted properties. Rietveld refinement was carried out along with cellulose phase. The crystallite size was computed using the Scherrer equation, and through first principle calculations, it has been illustrated and concluded that the size is not ellipsoidal, as previously suggested by other researchers; rather, it exhibits a multidimensional shape.

View Article and Find Full Text PDF

Microwave Hall measurements using a circularly polarized dielectric cavity.

Rev Sci Instrum

December 2024

Department of Advanced Materials Science, University of Tokyo, Kashiwa, Chiba 277-8561, Japan.

We have developed a circularly polarized dielectric rutile (TiO2) cavity with a high quality-factor that can generate circularly polarized microwaves from two orthogonal linearly polarized microwaves with a phase difference of ±π/2 using a hybrid coupler. Using this cavity, we have established a new methodology to measure the microwave Hall conductivity of a small single crystal of metal in the skin-depth region. Based on the cavity perturbation technique, we have shown that all components of the surface impedance tensor can be extracted under the application of a magnetic field by comparing the right- and left-handed circularly polarized modes.

View Article and Find Full Text PDF

First hyperpolarizability of cellulose nanocrystals: an experimental and theoretical investigation.

J Mater Chem B

December 2024

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.

Article Synopsis
  • - Cellulose nanocrystals (CNCs) have notable optical properties, but their nonlinear optical behavior, specifically the second-order response, was mostly unexplored until this study.
  • - Through Hyper-Rayleigh scattering experiments, researchers found CNCs exhibit a strong second-order nonlinear optical response, comparable to known biomaterials and inorganic materials, due to the orderly arrangement of cellulose chains.
  • - The study utilized quantum chemical modeling to predict CNCs' molecular hyperpolarizability and created an electrostatic model to align theoretical predictions with experimental results, highlighting CNCs' potential for optoelectronic applications and two-photon microscopy.
View Article and Find Full Text PDF

Averaging of material coefficients of crystallites deposited at an angle to a rotating substrate is considered. A simple model is proposed, and applied to determine effective linear dielectric, piezoelectric, and elastic constants of all Laue groups. While these represent tensors of rank 2, 3, and 4, the method applies generally to tensors of any rank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!