Molecular and Supramolecular Designs of Organic/Polymeric Micro-photoemitters for Advanced Optical and Laser Applications.

Acc Chem Res

Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraβe 1, Duisburg D-47048, Germany.

Published: June 2023

ConspectusFor optical and electronic applications of supramolecular assemblies, control of the hierarchical structure from nano- to micro- and millimeter scale is crucial. Supramolecular chemistry controls intermolecular interactions to build up molecular components with sizes ranging from several to several hundreds of nanometers using bottom-up self-assembly process. However, extending the supramolecular approach up to a scale of several tens of micrometers to construct objects with precisely controlled size, morphology, and orientation is challenging. Especially for microphotonics applications such as optical resonators and lasers, integrated optical devices, and sensors, a precise design of a micrometer-scale object is required. In this Account, we review the recent progress on precise control of microstructures from π-conjugated organic molecules and polymers, which work as micro-photoemitters and are suitable for optical applications.After the introduction on the importance of the control of the hierarchical structures from molecular assembly, we review supramolecular methodology for assembling molecules and supramolecules to form microstructures such as spheres and polygons with precisely controlled morphology and molecular orientations. The resultant microstructures act as anisotropic emitters of circularly polarized luminescence. We report that synchronous crystallization of π-conjugated chiral cyclophanes forms concave hexagonal pyramidal microcrystals with homogeneous size, morphology, and orientation, which clearly paves the way for the precise control of skeletal crystallization under kinetic control. Furthermore, we show microcavity functions of the self-assembled micro-objects. The self-assembled π-conjugated polymer microspheres work as whispering gallery mode (WGM) optical resonators, where the photoluminescence exhibits sharp and periodic emission lines. The spherical resonators with molecular functions act as long-distance photon energy transporters, convertors, and full-color microlasers. Fabrication of microarrays with photoswitchable WGM microresonators by the surface self-assembly technique realizes optical memory with physically unclonable functions of WGM fingerprints. All-optical logic operations are demonstrated by arranging the WGM microresonators on synthetic and natural optical fibers, where the photoswitchable WGM microresonators act as a gate for light propagation via a cavity-mediated energy transfer cascade. Meanwhile, the sharp WGM emission line is appropriate for utilization as optical sensors for monitoring the mode shift and mode splitting. The resonant peaks sensitively respond to humidity change, absorption of volatile organic compounds, microairflow, and polymer decomposition by utilizing structurally flexible polymers, microporous polymers, nonvolatile liquid droplets, and natural biopolymers as media of the resonators. We further construct microcrystals from π-conjugated molecules with rods and rhombic plates, which act as WGM laser resonators with light-harvesting function. Our developments, precise design and control of organic/polymeric microstructures, form a bridge between nanometer-scale supramolecular chemistry and bulk materials and pave the way toward flexible micro-optics applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.3c00084DOI Listing

Publication Analysis

Top Keywords

wgm microresonators
12
optical
9
control hierarchical
8
supramolecular chemistry
8
precisely controlled
8
size morphology
8
morphology orientation
8
optical resonators
8
precise design
8
precise control
8

Similar Publications

Chiral sensing is essential in biochemistry, biomedicine, and food industries. Traditional chiral sensing mainly focuses on enhancing the chiral near fields, where the quality factor of the resonator has largely been ignored. Here, we propose a whispering gallery mode (WGM) optical microresonator to enhance the chiral signal by exploiting its high quality factor.

View Article and Find Full Text PDF

Tantalum pentoxide (TaO) is widely recognized as a promising material platform for photonic integration. This is primarily attributed to its exceptional properties including large bandgap of 3.8 eV, broad transparency window ranging from 300 nm to 8000 nm, high nonlinear refractive index of ∼7.

View Article and Find Full Text PDF

There are some issues with traditional whispering gallery mode (WGM) resonators such as poor light extraction and a dense mode spectrum. In this paper, we introduce a solution to these limitations by proposing open WGM (OWGM) resonators that effectively reduce the mode density and enable directional radiation through a connected waveguide at the expense of some lowering in Q-factor. Numerical simulations of two-dimensional metallic and dielectric disk resonators with holes reveal a significant increase in intermode distance.

View Article and Find Full Text PDF

Integration of whispering-gallery-mode (WGM) resonators with high-quality factors (Q) into advanced timing, oscillator, and sensing systems demands a platform that enables precise resonance frequency modulation. This study investigates the tuning characteristics of magnetorheological polydimethylsiloxane (MR-PDMS) coated microspheres (µ-spheres) employed as magnetic microresonators, achieving a Q value of 10 at the 1550 nm wavelength. Magnetic WGM resonators not only endow the device with magnetic adjustability but also markedly improve thermal resistance.

View Article and Find Full Text PDF

High-quality microresonators can greatly enhance light-matter interactions and are excellent platforms for studying nonlinear optics. Wavelength conversion through nonlinear processes is the key to many applications of integrated optics. The stimulated Raman scattering (SRS) process can extend the emission wavelength of a laser source to a wider range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!