A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of Janus Composite Membranes with a Gradient Pore Structure Based on Melt Electrowriting and Solution Electrospinning for Directional Water Transport. | LitMetric

As a functional textile, the directional water transport textile has been widely used in daily life due to the ability of excellent moisture absorption and quick drying. However, it is still a great challenge to construct a textile that ensures water to transport rapidly from the skin to the outer environment (positive direction) and prevents the skin from being rewetted effectively in the reverse direction. Herein, this study aims to improve the ability of the hydrophobic layer in moisture management using melt electrowriting (MEW) to fabricate gradient pore structures precisely. The pore sizes in different layers can be tailored by altering the collector speed, and thus, the configuration of the pore structure dominates the process of water transportation. The unique multilayered structure achieves the directional water transport effects by improving the permeability with large pores and hindering the transport with small pores in the reverse direction. Meanwhile, we use solution electrospinning (SE) technology to fabricate the hydrophilic layer. The constructed composite membranes exhibit excellent performance with a one-way transport index up to 1281% and a desired overall moisture management capacity (OMMC) of 0.87. This research outlines an approach to fabricating Janus membranes to enhance its directional water transport performance, facilitating the MEW technique to be applied on the more expanded field for directional water transport textiles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c00738DOI Listing

Publication Analysis

Top Keywords

water transport
24
directional water
20
composite membranes
8
gradient pore
8
pore structure
8
melt electrowriting
8
solution electrospinning
8
transport
8
reverse direction
8
moisture management
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!