The primary aim of the study was to assess cerebral circulation in healthy young subjects during an ultra-short (45 min) session of ground-based microgravity modeled by "dry" immersion (DI), with the help of a multifunctional Laser Doppler Flowmetry (LDF) analyzer. In addition, we tested a hypothesis that cerebral temperature would grow during a DI session. The supraorbital area of the forehead and forearm area were tested before, within, and after a DI session. Average perfusion, five oscillation ranges of the LDF spectrum, and brain temperature were assessed. Within a DI session, in the supraorbital area most of LDF parameters remained unchanged except for a 30% increase in respiratory associated (venular) rhythm. The temperature of the supraorbital area increased by up to 38.5 °C within the DI session. In the forearm area, the average value of perfusion and its nutritive component increased, presumably due to thermoregulation. In conclusion, the results suggest that a 45 min DI session does not exert a substantial effect on cerebral blood perfusion and systemic hemodynamics in young healthy subjects. Moderate signs of venous stasis were observed, and brain temperature increased during a DI session. These findings must be thoroughly validated in future studies because elevated brain temperature during a DI session can contribute to some reactions to DI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204427PMC
http://dx.doi.org/10.3390/pathophysiology30020018DOI Listing

Publication Analysis

Top Keywords

brain temperature
16
supraorbital area
12
session
9
cerebral circulation
8
young subjects
8
min session
8
session supraorbital
8
forearm area
8
average perfusion
8
temperature
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!