A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilization of interpretable machine learning model to forecast the risk of major adverse kidney events in elderly patients in critical care. | LitMetric

AI Article Synopsis

  • The study focused on predicting major adverse kidney events within 30 days (MAKE30) in elderly ICU patients using machine learning techniques, specifically an extreme gradient boosting (XGBoost) model.
  • A cohort of 2,366 elderly patients from a hospital in China was analyzed, with 1,656 patients used to create the prediction model and 710 for testing its accuracy.
  • The XGBoost model demonstrated high predictive accuracy, with an area under the receiver operating characteristic curve of 0.930 for the training set and 0.851 for the test set, helping clinicians make better-informed decisions regarding patient care.

Article Abstract

Major adverse kidney events within 30 d (MAKE30) implicates poor outcomes for elderly patients in the intensive care unit (ICU). This study aimed to predict the occurrence of MAKE30 in elderly ICU patients using machine learning. The study cohort comprised 2366 elderly ICU patients admitted to the Second Xiangya Hospital of Central South University between January 2020 and December 2021. Variables including demographic information, laboratory values, physiological parameters, and medical interventions were used to construct an extreme gradient boosting (XGBoost) -based prediction model. Out of the 2366 patients, 1656 were used for model derivation and 710 for testing. The incidence of MAKE30 was 13.8% in the derivation cohort and 13.2% in the test cohort. The average area under the receiver operating characteristic curve of the XGBoost model was 0.930 (95% CI: 0.912-0.946) in the training set and 0.851 (95% CI: 0.810-0.890) in the test set. The top 8 predictors of MAKE30 tentatively identified by the Shapley additive explanations method were Acute Physiology and Chronic Health Evaluation II score, serum creatinine, blood urea nitrogen, Simplified Acute Physiology Score II score, Sequential Organ Failure Assessment score, aspartate aminotransferase, arterial blood bicarbonate, and albumin. The XGBoost model accurately predicted the occurrence of MAKE30 in elderly ICU patients, and the findings of this study provide valuable information to clinicians for making informed clinical decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208177PMC
http://dx.doi.org/10.1080/0886022X.2023.2215329DOI Listing

Publication Analysis

Top Keywords

elderly icu
12
icu patients
12
machine learning
8
major adverse
8
adverse kidney
8
kidney events
8
elderly patients
8
occurrence make30
8
make30 elderly
8
xgboost model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!