A kind of selective enrichment material based on a homemade molecularly imprinted polymer (MIP) fiber array with high adsorption capacity was developed for the accurate analysis of estrogens in food samples. Here, the MIP with 17β-estradiol as the template was obtained by polymerization. The chemical composition, morphologies, surface area, and pore size of the polymer were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer-Emmett-Teller theory. The extraction time, desorption solvent, desorption time, ionic strength, and the pH of solution were investigated to ascertain the best extraction conditions. Under the optimal extraction conditions, three fiber coatings of 17β-estradiol MIP and commercial polyacrylate (PA) were bound to a homemade handle to assemble the fiber array, respectively. The findings showed that the three-fiber array of the MIP significantly improved the extraction capacity by 145 times compared to PA. The MIP fiber array showed high adsorption capacity for the template molecule 17β-estradiol and its structural analogues estrone, bisphenol F, bisphenol B, and bisphenol A, with enrichment factors of 99.60-133.16. A molecularly imprinted polymer solid-phase microextraction fiber array (MIP-SPME fiber array) coupled with high-performance liquid chromatography-diode array detection was used for the analysis and detection of the five estrogens in milk and yogurt samples. Satisfactory recoveries were achieved ranging from 74.75-119.41% with <9.42% relative standard deviations. The developed method for the simultaneous determination of trace estrogens in food samples exhibited a limit of detection of 0.33 μg L. The MIP-SPME fiber array provided an available strategy for improving the selectivity and adsorption capacity of SPME for trace target component analysis in complex matrices and increasing the sensitivity of the analytical method.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb00555kDOI Listing

Publication Analysis

Top Keywords

fiber array
24
molecularly imprinted
12
array
8
solid-phase microextraction
8
imprinted polymer
8
mip fiber
8
array high
8
high adsorption
8
adsorption capacity
8
extraction conditions
8

Similar Publications

Background: Hexaploid oat (Avena sativa L.) is a commercially important cereal crop due to its soluble dietary fiber β-glucan, a hemicellulose known to prevent cardio-vascular diseases. To maximize health benefits associated with the consumption of oat-based food products, breeding efforts have aimed at increasing the β-glucan content in oat groats.

View Article and Find Full Text PDF

The influence of pectins and cellulose in the mechanical and adhesive properties of seed mucilage.

J Exp Bot

January 2025

Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany.

Several plant seeds release a mucilaginous envelope through hydration, rich in pectins and stabilized by cellulose fibers. This mucilage aids in seed protection, development, and adhesion for dispersal. This study aimed to separate the effects of pectins and cellulose fibers by using pectinase to remove mucilage pectins, leaving cellulose arrays, and performing wet and dry pull-off force measurements on seeds of three plant species: Salvia hispanica (Chia), Collomia grandiflora (Collomia) and Linum usitatissimum (Flax).

View Article and Find Full Text PDF

Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair.

Regen Biomater

December 2024

Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.

Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.

View Article and Find Full Text PDF

Mushrooms are considered as nutraceutical foods that can effectively prevent diseases such as cancer and other serious life-threatening conditions include neurodegeneration, hypertension, diabetes, and hypercholesterolemia. The , also known as the "Golden chanterelle" or "Golden girolle," is a significant wild edible ectomycorrhizal mushroom. It is renowned for its delicious, apricot-like aroma and is highly valued in various culinary traditions worldwide.

View Article and Find Full Text PDF

The use of composite materials, whether metallic or non-metallic, is becoming more popular nowadays because of some of their superior characteristics compared to the use of wood and metallic materials alone. From this perspective, a new natural fiber reinforced composite by varying the fiber orientation was developed in this study using coir and pineapple leaf fiber. This work uses the Taguchi method to investigate the different effects of control factors on mechanical and physical characteristics of the fabricated natural fiber-based composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!