Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oxidative stress is a state of imbalance in the body's oxidative balance, which can cause or worsen many diseases. Several studies have focused on the direct scavenging of free radicals, however, the strategy of precisely controlling antioxidant activities remotely and spatiotemporally has rarely been reported. Herein, we report a method inspired by the albumin-triggered biomineralization process with polyphenol-assisted strategy to prepare nanoparticles (TA-BSA@CuS) with NIR-II-targeted photo-enhanced antioxidant capacity. Systematic characterization demonstrated that the introduction of polyphenol (tannic acid (TA)) induced the formation of a CuO-doped heterogeneous structure and CuS nanoparticles. Compared with the TA-free CuS nanoparticles, TA-BSA@CuS exhibited excellent photothermal property in the NIR-II region, which is ascribed to the TA-induced Cu defects and doped CuO. Moreover, the photothermal property of CuS improved the broad-spectrum free radical scavenging efficiency of TA-BSA@CuS, and its HO clearance rate increased by 47.3% under NIR-II irradiation. Meanwhile, TA-BSA@CuS exhibited low biological toxicity and intracellular free radical scavenging ability. Moreover, the excellent photothermal property of TA-BSA@CuS endowed it with good antibacterial ability. Therefore, we expect that this work will pave the way for the synthesis of polyphenolic compounds and the improvement in their antioxidant capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3tb00541k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!