Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: In some hospitals in remote areas, due to the lack of MRI scanners with high magnetic field intensity, only low-resolution MRI images can be obtained, hindering doctors from making correct diagnoses. In our study, higher-resolution images were obtained through low-resolution MRI images. Moreover, as our algorithm is a lightweight algorithm with a small number of parameters, it can be carried out in remote areas under the condition of the lack of computing resources. Moreover, our algorithm is of great clinical significance in providing references for doctors' diagnoses and treatment in remote areas.
Methods: We compared different super-resolution algorithms to obtain high-resolution MRI images, including SRGAN, SPSR, and LESRCNN. A global skip connection was applied to the original network of LESRCNN to use global semantic information to get better performance.
Results: Experiments reported that our network improved SSMI by 0.8% and also achieved an obvious increase in PSNR, PI, and LPIPS compared to LESRCNN in our dataset. Similar to LESRCNN, our network has a very short running time, a small number of parameters, low time complexity, and low space complexity while ensuring high performance compared to SRGAN and SPSR. Five MRI doctors were invited for a subjective evaluation of our algorithm. All agreed on significant improvements and that our algorithm could be used clinically in remote areas and has great value.
Conclusion: The experimental results demonstrated the performance of our algorithm in super-resolution MRI image reconstruction. It allows us to obtain high-resolution images in the absence of high-field intensity MRI scanners, which have great clinical significance. The short running time, a small number of parameters, low time complexity, and low space complexity ensure that our network can be used in grassroots hospitals in remote areas that lack computing resources. We can reconstruct high-resolution MRI images in a short time, thus saving time for patients. Our algorithm can be biased towards practical applications; however, doctors have affirmed the clinical value of our algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573405620666230522151414 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!