In this study, our goal was to determine probe-specific thresholds for identifying aberrant, or outlying, DNA methylation and to provide guidance on the relative merits of using continuous or outlier methylation data. To construct a reference database, we downloaded Illumina Human 450K array data for more than 2,000 normal samples, characterized the distribution of DNA methylation and derived probe-specific thresholds for identifying aberrations. We made the decision to restrict our reference database to solid normal tissue and morphologically normal tissue found adjacent to solid tumours, excluding blood which has very distinctive patterns of DNA methylation. Next, we explored the utility of our outlier thresholds in several analyses that are commonly performed on DNA methylation data. Outliers are as effective as the full continuous dataset for simple tasks, like distinguishing tumour tissue from normal, but becomes less useful as the complexity of the problem increases. We developed an R package called OutlierMeth containing our thresholds, as well as functions for applying them to data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208159PMC
http://dx.doi.org/10.1080/15592294.2023.2213874DOI Listing

Publication Analysis

Top Keywords

dna methylation
24
probe-specific thresholds
8
thresholds identifying
8
methylation data
8
reference database
8
normal tissue
8
methylation
7
dna
6
detecting aberrant
4
aberrant dna
4

Similar Publications

Bisphenol A alters JUN promoter methylation, impairing steroid metabolism in placental cells and linking to sub-representative phenotypes.

Gene

January 2025

School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China. Electronic address:

Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism.

View Article and Find Full Text PDF

Decoding the protein methylome: Identification, validation, and functional insights.

Bioorg Med Chem

December 2024

Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States. Electronic address:

Protein methylation regulates diverse cellular processes including gene expression and DNA repair. This review discusses the methods of identifying and validating substrates for protein methyltransferases (MTases), as well as the biological roles of methylation. Meanwhile, we outline continued efforts necessary to fully map MTase-substrate pairs and uncover the complex regulatory roles of protein methylation in cellular function.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!