Circular RNAs (circRNAs) as endogenous non-coding RNAs are characterized by covalently closed circular structures, and they widely exist in mammalian cells. The aberrant expression of circRNAs may result in various diseases. Herein, we demonstrate the construction of genetically encoded light-up RNA aptamers for ultrasensitive and label-free detection of circRNA mitochondrial tRNA translation optimization 1 (circMTO1) in cancer cells and tissues. The light-up RNA aptamers are generated by proximity ligation-activated recombinase polymerase amplification (RPA)-assisted transcription amplification. When circMTO1 is present, it initiates the proximity ligation reaction, activating RPA to produce numerous long double-stranded DNAs containing T7 promoters. Subsequently, the RPA products are identified by T7 RNA polymerase, initiating the transcription amplification reaction to generate abundant Spinach RNA aptamers. Spinach RNA aptamers can bind with DFHBI (3,5-difluoro-4-hydroxybenzylidene imidazolidinone) dye to produce a distinct fluorescence signal with near-zero background. This biosensor exhibits excellent selectivity and high sensitivity with a limit of detection of 2.54 aM. It can accurately monitor cellular circMTO1 at the single-cell level and discriminate the expression of circMTO1 between breast cancer patient tissues and healthy tissues. Notably, this biosensor can be employed to measure other nucleic acids by altering the corresponding target recognition sequences, providing a valuable platform for cancer diagnosis and biomedical study.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c01624DOI Listing

Publication Analysis

Top Keywords

rna aptamers
20
light-up rna
12
construction genetically
8
genetically encoded
8
encoded light-up
8
cancer cells
8
cells tissues
8
transcription amplification
8
spinach rna
8
rna
6

Similar Publications

Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au.

Mikrochim Acta

January 2025

Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong, College of Life Science, Normal University, Shandong Normal University, Jinan, 250014, People's Republic of China.

A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection.

View Article and Find Full Text PDF

Advances in Functional Nucleic Acid SERS Sensing Strategies.

ACS Sens

January 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.

Functional nucleic acids constitute a distinct category of nucleic acids that diverge from conventional nucleic acid amplification methodologies. They are capable of forming intricate hybrid structures through Hoogsteen and reverse Hoogsteen hydrogen bonding interactions between double-stranded and single-stranded DNA, thereby broadening the spectrum of DNA interactions. In recent years, functional DNA/RNA-based surface-enhanced Raman spectroscopy (SERS) has emerged as a potent platform capable of ultrasensitive and multiplexed detection of a variety of analytes of interest.

View Article and Find Full Text PDF

ATLAS-seq: a microfluidic single-cell TCR screen for antigen-reactive TCRs.

Nat Commun

January 2025

Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Discovering antigen-reactive T cell receptors (TCRs) is central to developing effective engineered T cell immunotherapies. However, the conventional technologies for isolating antigen-reactive TCRs (i.e.

View Article and Find Full Text PDF

RNA Diagnostics and Therapeutics: A Comprehensive Review.

RNA Biol

January 2025

Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.

RNA-focused therapy and diagnostics have been making waves in molecular biology due to the advantages RNA has over DNA; for instance, the ability of RNA to target nearly any genetic component in the cell is a big step in treating disorders. Moreover, RNA-based diagnosis of diseases is only becoming increasingly popular, especially after the COVID-19 pandemic, which brought up the need for cost-effective and efficient diagnosing kits for the vast majority. RNA-based techniques also have close to no risk of genotoxicity and can efficiently target undruggable regions of the cell.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common bone malignancy. c-MET is recognized as a therapeutic target. However, traditional c-MET inhibitors show compromised efficacy due to the acquired resistance and side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!