Plant parts have unfathomable potential in the synthesis of nanoparticles. The current study was designed for the photosynthesis of silver nanoparticles (NC-AgNPs) using bark extract of . Different analytical methods were used to characterize the synthesized nanoparticles. HR-TEM analysis identifies the formation of multi-shaped NC-AgNPs like spherical, quasi-spherical, rod-shaped, trigonal, square, pentagonal, and hexagonal with a size range of 18-91 nm. The crystallize size of NC-AgNPs was found to be 27.6 nm. The catalytic effectiveness of NC-AgNPs in degrading Crystal violet (CV) dye is remarkable. Important parameters such as the effect of catalyst dose and pH were investigated. Dose-dependentantioxidant activity of NC-AgNPs was determined by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. Low-cost synthesis and eco-friendly reagents were the salient features that made NC-AgNPs more attractive toward catalytic and antioxidant activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2023.2214243 | DOI Listing |
BMC Microbiol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.
Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.
Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.
Sci Rep
January 2025
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China. Electronic address:
Nanocatalytic medicine offers a novel solution to address the issues of low efficacy, potential side effects, and the development of drug resistance associated with traditional therapies. Therefore, developing highly efficient and durable nanozymes is of great significance for treating diseases related to oxidative stress. In recent years, prussian blue nanoparticles (PBNPs) have been demonstrated to possess multiple enzyme-like catalytic activities and are thus referred to as prussian blue nanozymes (PBNZs).
View Article and Find Full Text PDFSci Rep
January 2025
Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan. Electronic address:
Chlorogenic acid, a well-known antioxidant, has potential applications in health care, food, and cosmetic sectors. However, its low solubility hinders its application at the industrial scale. The primary goal of the present study was to increase the lipophilic property of chlorogenic acid through esterification using an ultrasonication approach and Novozym® 435 as the catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!