Background: Epilepsy is a neurological disorder that is usually detected by electroencephalogram (EEG) signals. Since manual examination of epilepsy seizures is a laborious and time-consuming process, lots of automatic epilepsy detection algorithms have been proposed. However, most of the available classification algorithms for epilepsy EEG signals adopted a single feature extraction, in turn to result in low classification accuracy. Although a small account of studies have carried out feature fusion, the computational efficiency is reduced due to too many features, because there are also some poor features that interfere with the classification results.

Methods: In order to solve the above problems, an automatic recognition method of epilepsy EEG signals based on feature fusion and selection is proposed in this paper. Firstly, the Approximate Entropy (ApEn), Fuzzy Entropy (FuzzyEn), Sample Entropy (SampEn), and Standard Deviation (STD) mixed features of the subband obtained by the Discrete Wavelet Transform (DWT) decomposition of EEG signals are extracted. Secondly, the random forest algorithm is used for feature selection. Finally, the Convolutional Neural Network (CNN) is used to classify epilepsy EEG signals.

Results: The empirical evaluation of the presented algorithm is performed on the benchmark Bonn EEG datasets and New Delhi datasets. In the interictal and ictal classification tasks of Bonn datasets, the proposed model achieves an accuracy of 99.9%, a sensitivity of 100%, a precision of 99.81%, and a specificity of 99.8%. For the interictal-ictal case of New Delhi datasets, the proposed model achieves a classification accuracy of 100%, a sensitivity of 100%, a specificity of 100%, and a precision of 100%.

Conclusion: The proposed model can effectively realize the high-precision automatic detection and classification of epilepsy EEG signals. This model can provide high-precision automatic detection capability for clinical epilepsy EEG detection. We hope to provide positive implications for the prediction of seizure EEG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201805PMC
http://dx.doi.org/10.1186/s12911-023-02180-wDOI Listing

Publication Analysis

Top Keywords

eeg signals
20
epilepsy eeg
20
feature fusion
12
proposed model
12
eeg
10
based feature
8
epilepsy
8
classification accuracy
8
delhi datasets
8
datasets proposed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!