This work was conducted to study positive and negative impacts of cerium (Ce) and samarium (Sm) on two cultivars (Arta and Baharan) in wheat plant. Symbols of stress such as proline, malondialdehyde (MDA) and antioxidant enzymes, which may be complicated in the suppression responses of plants, were also studied. Wheat plants were exposed to 0, 2500, 5000, 7500, 10,000 and 15,000 μM of Ce and Sm for 7 days. The growth enhanced in plants treated with lesser Ce and Sm concentration (2500 μM) and declined in plants treated with upper concentrations as compared to untreated plants. The treatment with 2500 μM of Ce and Sm increased dry weigh in Arta by 68.42 and 20% and in Baharan by 32.14% and 27.3%. Thus, Ce and Sm had hormesis effect on growth in wheat plants. According to plant's growth parameter patterns, Arta cultivar had more sensitive to Sm than to Ce, whereas Baharan cultivar had sensitive to Ce than to Sm. Our results indicated impact of Ce and Sm on proline accumulation depended on the dosage of Ce and Sm. It was observed that Ce and Sm accumulated in wheat plants at higher exposure doses. Increment of MDA content by Ce and Sm treatments showed that these metals caused oxidative stress in wheat plants. Ce and Sm blocked enzymatic antioxidant system (superoxide dismutases, peroxidase and polyphenol peroxidase) in wheat. In wheat plants treated with lower Ce and Sm concentrations higher amounts of non-enzymatic antioxidant metabolites were detected. Thus, we showed the potential negative impact of unsuitable utilization of REEs in plants and suggested growth and interruption in physiological and biochemical mechanisms as a possible factor to recognize the underlying toxicological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203294 | PMC |
http://dx.doi.org/10.1038/s41598-023-35561-2 | DOI Listing |
Environ Microbiome
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.
Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.
Plant Genome
March 2025
Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA.
Crossing over breaks linkages and leads to a wider array of allele combinations. My objective was to assess the contribution of crossing over to genetic variance (V) in maize (Zea mays L.) and wheat (Triticum aestivum L.
View Article and Find Full Text PDFPlant Genome
March 2025
USDA-ARS Southeast Area, Plant Science Research, Raleigh, North Carolina, USA.
Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide polymorphic markers (SNPs) resulted in a substantial improvement in predictive ability compared to the conventional genomic prediction models. Over the course of several years, the prediction ability varied due to diverse weather conditions.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
A major locus Qfcr.cau-1B conferring resistance to Fusarium crown rot was identified and validated. The putative gene underlying this locus was pinpointed via virus-induced gene silencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!