Here, we have developed a deep learning method to fully automatically detect and quantify six main clinically relevant atrophic features associated with macular atrophy (MA) using optical coherence tomography (OCT) analysis of patients with wet age-related macular degeneration (AMD). The development of MA in patients with AMD results in irreversible blindness, and there is currently no effective method of early diagnosis of this condition, despite the recent development of unique treatments. Using OCT dataset of a total of 2211 B-scans from 45 volumetric scans of 8 patients, a convolutional neural network using one-against-all strategy was trained to present all six atrophic features followed by a validation to evaluate the performance of the models. The model predictive performance has achieved a mean dice similarity coefficient score of 0.706 ± 0.039, a mean Precision score of 0.834 ± 0.048, and a mean Sensitivity score of 0.615 ± 0.051. These results show the unique potential of using artificially intelligence-aided methods for early detection and identification of the progression of MA in wet AMD, which can further support and assist clinical decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203346PMC
http://dx.doi.org/10.1038/s41598-023-35414-yDOI Listing

Publication Analysis

Top Keywords

deep learning
8
macular atrophy
8
wet age-related
8
age-related macular
8
macular degeneration
8
optical coherence
8
coherence tomography
8
atrophic features
8
learning detect
4
macular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!