Covid-19, caused by severe acute respiratory syndrome coronavirus 2, broke out as a pandemic during the beginning of 2020. The rapid spread of the disease prompted an unprecedented global response involving academic institutions, regulatory agencies, and industries. Vaccination and nonpharmaceutical interventions including social distancing have proven to be the most effective strategies to combat the pandemic. In this context, it is crucial to understand the dynamic behavior of the Covid-19 spread together with possible vaccination strategies. In this study, a susceptible-infected-removed-sick model with vaccination (SIRSi-vaccine) was proposed, accounting for the unreported yet infectious. The model considered the possibility of temporary immunity following infection or vaccination. Both situations contribute toward the spread of diseases. The transcritical bifurcation diagram of alternating and mutually exclusive stabilities for both disease-free and endemic equilibria were determined in the parameter space of vaccination rate and isolation index. The existing equilibrium conditions for both points were determined in terms of the epidemiological parameters of the model. The bifurcation diagram allowed us to estimate the maximum number of confirmed cases expected for each set of parameters. The model was fitted with data from São Paulo, the state capital of SP, Brazil, which describes the number of confirmed infected cases and the isolation index for the considered data window. Furthermore, simulation results demonstrate the possibility of periodic undamped oscillatory behavior of the susceptible population and the number of confirmed cases forced by the periodic small-amplitude oscillations in the isolation index. The main contributions of the proposed model are as follows: A minimum effort was required when vaccination was combined with social isolation, while additionally ensuring the existence of equilibrium points. The model could provide valuable information for policymakers, helping define disease prevention mitigation strategies that combine vaccination and non-pharmaceutical interventions, such as social distancing and the use of masks. In addition, the SIRSi-vaccine model facilitated the qualitative assessment of information regarding the unreported infected yet infectious cases, while considering temporary immunity, vaccination, and social isolation index.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186248PMC
http://dx.doi.org/10.1016/j.isatra.2023.05.008DOI Listing

Publication Analysis

Top Keywords

number confirmed
12
model
8
vaccination
8
social distancing
8
temporary immunity
8
bifurcation diagram
8
parameters model
8
confirmed cases
8
social isolation
8
isolation
5

Similar Publications

Investigating BoLA Class II DRB3*009:02 carrying cattle in Japan.

Vet Anim Sci

March 2025

Veterinary Virology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi Bunkyodai, Ebetsu, Hokkaido, 0698501, Japan.

Enzootic bovine leukosis (EBL) is a malignant lymphoma of cattle that is mainly caused by bovine leukemia virus (BLV) infection. In this study, PCR-RFLP was used to investigate the frequency of the DRB3*009:02 allele in several farms with different herd management practices in Japan. A total of 742 Holsteins (384) and Japanese Blacks (230) were used as the sample size for the study, which was larger than the number of cattle in the study area with a confidence level of 95 % and a margin of error of 8.

View Article and Find Full Text PDF

Background: Most patients initially diagnosed with non-muscle invasive bladder cancer (NMIBC) still have frequent recurrence after urethral bladder tumor electrodesiccation supplemented with intravesical instillation therapy, and their risk of recurrence is difficult to predict. Risk prediction models used to predict postoperative recurrence in patients with NMIBC have limitations, such as a limited number of included cases and a lack of validation. Therefore, there is an urgent need to develop new models to compensate for the shortcomings and potentially provide evidence for predicting postoperative recurrence in NMIBC patients.

View Article and Find Full Text PDF

Pan-Cancer Analysis Identifies YKT6 as a Prognostic and Immunotherapy Biomarker, with an Emphasis on Cervical Cancer.

Onco Targets Ther

January 2025

Department of Gynecology, Sichuan Provincial Hospital of Traditional Chinese Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China.

Background: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion is crucial for autophagy, making YKT6, a key modulator of cell membrane fusion, a potential target for cancer therapy. However, its oncogenic role across different cancers remains unclear. This study was to investigate the prognostic value and potential immunological functions of YKT6, including cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC).

View Article and Find Full Text PDF

During macrofungal surveys in 2019-2024, several specimens belonging to the family Psathyrellaceae were collected from the bed of the Indus River, Punjab, Pakistan. Phylogenetic analyses, based on ITS, LSU, and tef-1α sequences and morpho-anatomical study, confirmed the novelty and placement of three taxa in the genus . They are described as , , and .

View Article and Find Full Text PDF

Temporal variations in and predictive values of ABG results prior to in-hospital cardiac arrest.

J Med Surg Public Health

December 2024

College of Nursing, Michigan State University, Michigan, Life Science, 1355 Bogue St Room A218, East Lansing, MI 48824, USA.

In-hospital cardiac arrest (IHCA) has been understudied relative to out-of-hospital cardiac arrest. Further, studies of IHCA have mainly focused on a limited number of pre-arrest patient characteristics (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!