Immunotherapy strategies aim to mobilize immune defenses against tumor cells by targeting mainly T cells. Co-inhibitory receptors or immune checkpoints (ICPs) (such as PD-1 and CTLA4) can limit T cell receptor (TCR) signal propagation in T cells. Antibody-based blocking of immune checkpoints (immune checkpoint inhibitors, ICIs) enable escape from ICP inhibition of TCR signaling. ICI therapies have significantly impacted the prognosis and survival of patients with cancer. However, many patients remain refractory to these treatments. Thus, alternative approaches for cancer immunotherapy are needed. In addition to membrane-associated inhibitory molecules, a growing number of intracellular molecules may also serve to downregulate signaling cascades triggered by TCR engagement. These molecules are known as intracellular immune checkpoints (iICPs). Blocking the expression or the activity of these intracellular negative signaling molecules is a novel field of action to boost T cell-mediated antitumor responses. This area is rapidly expanding. Indeed, more than 30 different potential iICPs have been identified. Over the past 5 years, several phase I/II clinical trials targeting iICPs in T cells have been registered. In this study, we summarize recent preclinical and clinical data demonstrating that immunotherapies targeting T cell iICPs can mediate regression of solid tumors including (membrane associated) immune-checkpoint inhibitor refractory cancers. Finally, we discuss how these iICPs are targeted and controlled. Thereby, iICP inhibition is a promising strategy opening new avenues for future cancer immunotherapy treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231026 | PMC |
http://dx.doi.org/10.1136/jitc-2022-005845 | DOI Listing |
Vaccines (Basel)
November 2024
Department of Biosciences and Bioinformatics, School of Science, Suzhou Municipal Key Lab in Biomedical Sciences and Translational Immunology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
The discovery of immune checkpoints (ICs) has pushed cancer treatment into the next era. As an emerging immune checkpoint, the TIGIT/CD155 axis inhibits the cytotoxicity of T and NK cells through multiple pathways. Immune checkpoint inhibitors (ICIs) targeting TIGIT are hopefully expected to address the issue of unresponsiveness to anti-PD-(L)1 monoclonal antibodies (mAbs) by combination therapy.
View Article and Find Full Text PDFToxics
November 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
DEHP is a plasticizer that is widely found in our water environment and poses a significant risk to the environment and human health. Long-term exposure to DEHP can cause endocrine disruption and interfere with the organism's normal functioning. In order to explore the potential effects of DEHP on the development of biological brain tissues, this study used bioinformatics analysis to confirm the diagnostic and prognostic value of PER3 in gliomas and further validated the neurotoxicity of DEHP using methods such as behavioral experiments and molecular biology in zebrafish.
View Article and Find Full Text PDFNutrients
December 2024
Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
Background/objectives: Immune checkpoints are essential for regulating excessive autoimmune responses and maintaining immune homeostasis. However, in the tumor microenvironment, these checkpoints can lead to cytotoxic T cell exhaustion, allowing cancer cells to evade immune surveillance and promote tumor progression. The expression of programmed death-ligand 1 (PD-L1) in cancer cells is associated with poor prognoses, reduced survival rates, and lower responses to therapies.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Lung Cancer Center, Hospital Havelhöhe, Kladower Damm 221, 14089 Berlin, Germany.
Recent advancements in cancer treatment have shown the potential of immune checkpoint blockade (ICB) plus L. therapy in improving survival rates for patients with advanced or metastatic non-small-cell lung cancer (NSCLC). The objective of this study was to investigate factors associated with improved survival in NSCLC patients treated with a combination of ICB and abnobaViscum.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!