A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formulation development of collagen/chitosan-based porous scaffolds for skin wounds repair and regeneration. | LitMetric

Herein we developed a hydrogel based porous cross-linked scaffold intended for the treatment of chronic skin ulcers. It is made of collagen, the most abundant protein of mammals ECM, and chitosan, a natural polysaccharide endowed with numerous positive cues for wound repair. Different cross-linking methods, namely UV irradiation with the addition of glucose, addition of tannic acid as cross-linking agent and ultrasonication, were employed to prepare a cross-linked hydrogel with a highly interconnected 3D internal structure. The variables considered critical to obtain a suitable system for the envisaged application are the composition of hydrogels, especially the concentration of chitosan, and the concentration ratio between chitosan and collagen. Stable systems, characterized by high porosity, were obtained thanks to the use of freeze-drying process. To assess the influence of the above-mentioned variables on scaffold mechanical properties, a Design of Experiments (DoE) approach was exploited, which resulted in the identification of the best hydrogel composition. In vitro and in vivo assays on a fibroblast model cell line and on a murine model, respectively, demonstrated scaffold biocompatibility, biomimicry, and safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.125000DOI Listing

Publication Analysis

Top Keywords

formulation development
4
development collagen/chitosan-based
4
collagen/chitosan-based porous
4
porous scaffolds
4
scaffolds skin
4
skin wounds
4
wounds repair
4
repair regeneration
4
regeneration developed
4
developed hydrogel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!