Anti-inflammatory effects of naringenin 8-sulphonate from Parinari excelsa Sabine stem bark and its semi-synthetic derivatives.

Bioorg Chem

REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal. Electronic address:

Published: September 2023

The inflammatory response is a vital mechanism for repairing damage induced by aberrant health states or external insults; however, persistent activation can be linked to numerous chronic diseases. The nuclear factor kappa β (NF-κB) inflammatory pathway and its associated mediators have emerged as critical targets for therapeutic interventions aimed at modulating inflammation, necessitating ongoing drug development. Previous studies have reported the inhibitory effect of a hydroethanol extract derived from Parinari excelsa Sabine (Chrysobalanaceae) on tumour necrosis factor-alpha (TNF-α), but the phytoconstituents and mechanisms of action remained elusive. The primary objective of this study was to elucidate the phytochemical composition of P. excelsa stem bark and its role in the mechanisms underpinning its biological activity. Two compounds were detected via HPLC-DAD-ESI(Ion Trap)-MS analysis. The predominant compound was isolated and identified as naringenin-8-sulphonate (1), while the identity of the second compound (compound 2) could not be determined. Both compound 1 and the extract were assessed for anti-inflammatory properties using a cell-based inflammation model, in which THP-1-derived macrophages were stimulated with LPS to examine the treatments' effects on various stages of the NF-κB pathway. Compound 1, whose biological activity is reported here for the first time, demonstrated inhibition of NF-κB activity, reduction in interleukin 6 (IL-6), TNF-α, and interleukin 1 beta (IL-1β) production, as well as a decrease in p65 nuclear translocation in THP-1 cells, thus highlighting the potential role of sulphur substituents in the activity of naringenin (3). To explore the influence of sulphation on the anti-inflammatory properties of naringenin derivatives, we synthesized naringenin-4'-O-sulphate (4) and naringenin-7-O-sulphate (5) and evaluated their anti-inflammatory effects. Naringenin derivatives 4 and 5 did not display potent anti-inflammatory activities; however, compound 4 reduced IL-1β production, and compound 5 diminished p65 translocation, with both exhibiting the capacity to inhibit TNF-α and IL-6 production. Collectively, the findings demonstrated that the P. excelsa extract was more efficacious than all tested compounds, while providing insights into the role of sulphation in the anti-inflammatory activity of naringenin derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2023.106614DOI Listing

Publication Analysis

Top Keywords

naringenin derivatives
12
anti-inflammatory effects
8
effects naringenin
8
parinari excelsa
8
excelsa sabine
8
stem bark
8
biological activity
8
anti-inflammatory properties
8
il-1β production
8
activity naringenin
8

Similar Publications

Theoretical and Electrochemical Evaluation of Cannabis Sativa L. Extracts as Corrosion Inhibitors for Mild Steel in Acidic Medium.

ChemistryOpen

December 2024

Laboratory of Advanced Materials and Process Engineering, Faculty of Science, University Ibn Tofail, University Street, Kenitra, B.P 242, Morocco.

The corrosion of metals in acidic environments remains a significant challenge, driving the search for sustainable and eco-friendly inhibitors derived from natural sources. This study evaluates the corrosion inhibition potential of three extracts from Cannabis sativa L., namely ethanol extract (EET), hexane extract (EHX), and dichloromethane extract (EDM), for mild steel in a 1 M HCl acidic medium.

View Article and Find Full Text PDF

Epigenetic regulation by naringenin and naringin: A literature review focused on the mechanisms underlying its pharmacological effects.

Fitoterapia

December 2024

Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China. Electronic address:

Epigenetics refers to heritable changes in gene expression or phenotypic changes that occur without changing the gene sequence. The main methods of epigenetics include non-coding RNA, histone modification, and DNA modification, which play an essential role in gene expression regulation and even the occurrence of diverse diseases. Naringenin, the aglycone form of naringin, is a natural flavonoid compound mainly found in fruits or plant derivatives such as citrus, tomatoes, and cherries.

View Article and Find Full Text PDF

In Vitro Inducted Tetraploid Nakai ex F. Maek. Alters Polyphenol Species and Synthesis.

Plants (Basel)

November 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.

Nakai ex F. Maek. has been employed in traditional Chinese medicine for millennia.

View Article and Find Full Text PDF

The aim of this study was to evaluate the antimicrobial properties and profile of bioactive compounds from mesocarp, peel and leaves of four autochthonous apple cultivars against human pathogens, Escherichia coli, Staphylococcus aureus and Bacillus subtilis and the apple pathogen Erwinia amylovora by direct detection on HPTLC plates and subsequent chemometric analysis. UHPLC Q-ToF MS was used for detailed characterization of the bioactive compounds with antimicrobial properties. Leaf extracts showed the highest antibacterial activity against all bacterial strains, followed by peel extracts, while the mesocarp extracts showed only weak and selective inhibition zones for E.

View Article and Find Full Text PDF

Objective: Liver X receptors (LXRs) play essential roles in cholesterol homeostasis and immune response. In obesity, elevated cholesterol levels trigger proinflammatory responses; however, the specific contributions of LXRs to adipose tissue (AT) macrophage (ATM) phenotype and metabolic programming are not fully understood. In this study, we determine the role of LXR isoforms in diet-induced obesity AT inflammation and insulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!