Associations of prenatal exposure to NO and near roadway residence with placental gene expression.

Placenta

Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.

Published: July 2023

Introduction: Traffic-related air pollution (TRAP), a common exposure, potentially impacts pregnancy through altered placental function. We investigated associations between prenatal TRAP exposure and placental gene expression.

Methods: Whole transcriptome sequencing was performed on placental samples from CANDLE (Memphis, TN) (n = 776) and GAPPS (Seattle and Yakima, WA) (n = 205), cohorts of the ECHO-PATHWAYS Consortium. Residential NO exposures were computed via spatiotemporal models for full-pregnancy, each trimester, and the first/last months of pregnancy. Individual cohort-specific, covariate-adjusted linear models were fit for 10,855 genes and respective exposures (NO or roadway proximity [≤150 m]). Infant-sex/exposure interactions on placental gene expression were tested with interaction terms in separate models. Significance was based on false discovery rate (FDR<0.10).

Results: In GAPPS, final-month NO exposure was positively associated with MAP1LC3C expression (FDR p-value = 0.094). Infant-sex interacted with second-trimester NO on STRIP2 expression (FDR interaction p-value = 0.011, inverse and positive associations among male and female infants, respectively) and roadway proximity on CEBPA expression (FDR interaction p-value = 0.045, inverse among females). In CANDLE, infant-sex interacted with first-trimester and full-pregnancy NO on RASSF7 expression (FDR interaction p-values = 0.067 and 0.013, respectively, positive among male infants and inverse among female infants).

Discussion: Overall, pregnancy NO exposure and placental gene expression associations were primarily null, with exception of final month NO exposure and placental MAP1LC3C association. We found several interactions of infant sex and TRAP exposures on placental expression of STRIP2, CEBPA, and RASSF7. These highlighted genes suggest influence of TRAP on placental cell proliferation, autophagy, and growth, though additional replication and functional studies are required for validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349584PMC
http://dx.doi.org/10.1016/j.placenta.2023.05.004DOI Listing

Publication Analysis

Top Keywords

placental gene
12
associations prenatal
8
gene expression
8
placental
5
prenatal exposure
4
exposure roadway
4
roadway residence
4
residence placental
4
expression introduction
4
introduction traffic-related
4

Similar Publications

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

Mechanisms controlling the process and patterning of blood vessel development in the placenta remain largely unknown. The close physical proximity of early blood vessels observed in the placenta and the cytotrophoblast, as well as the reported production of vasculogenic growth factors by the latter, suggests that signalling between these two niches may be important. Here, we have developed an in vitro model to address the hypothesis that the cytotrophoblast, by the secretion of soluble factors, drives differentiation of resident sub-trophoblastic mesenchymal stem cells (MSCs) along a vascular lineage, thereby establishing feto-placental circulation.

View Article and Find Full Text PDF

Antagonisation of Prokineticin Receptor-2 Attenuates Preeclampsia Symptoms.

J Cell Mol Med

January 2025

Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, INSERM, CEA, UMR 1292, Grenoble, France.

Preeclampsia (PE) is the most threatening pathology of human pregnancy. Placenta from PE patients releases harmful factors that contribute to the exacerbation of the disease. Among these factors is the prokineticin1 (PROK1) and its receptor, PROKR2 that we identified as a mediators of PE.

View Article and Find Full Text PDF

The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms.

Dev Cell

January 2025

Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany. Electronic address:

The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!