Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carbon quantum dots (CQDs) are considered promising metal-free green catalysts for the activation of persulfates, but direct experimental evidence to identify the true active sites on the surface of CQDs is still lacking. We prepared CQDs with different oxygen contents by controlling the carbonisation temperature, using a simple pyrolysis method. Photocatalytic activity experiments show that CQDs exhibits the best PMS activation performance. By investigating the relationship between the oxygen functional groups on CQDs surface and photocatalytic activity, it was postulated that the C=O groups might be the predominant active site, which was confirmed by selective chemical titrations of the C=O, C-OH and COOH groups. Furthermore, limited to the weak photocatalytic properties of the pristine CQDs, ammonia and phenylhydrazine were used to precisely nitrogen-modify the o-CQD surface. We found that phenylhydrazine-modified o-CQDs-PH promoted the absorption of visible light and the separation of photocarriers, thus enhancing the activation of PMS. Theoretical calculations provide more insights from different levels of the pollutant, fine-tuned CQDs, and their interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.05.092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!