Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent space's discriminative ability in the generative adversarial network (GAN) and a simple multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs.
Materials And Methods: Our model was trained and validated in a two-step manner. First, we trained a GAN using CXRs with various scoliosis severities and utilized the trained network as a feature extractor using the GAN inversion method. Second, we classified each vector from the latent space using a simple MLP.
Results: The 2-layer MLP exhibited the best classification in the ablation study. With this model, the area under the receiver operating characteristic (AUROC) curves were 0.850 in the internal and 0.847 in the external datasets. Furthermore, when the sensitivity was fixed at 0.9, the model's specificity was 0.697 in the internal and 0.646 in the external datasets.
Conclusion: We developed a classifier for Adolescent idiopathic scoliosis (AIS) through generative representation learning. Our model shows good AUROC under screening chest radiographs in both the internal and external datasets. Our model has learned the spectral severity of AIS, enabling it to generate normal images even when trained solely on scoliosis radiographs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202263 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285489 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!