Herein, we report a blended ligand and structure-based pharmacophore screening approach to identify new natural leads against the Protein Lysine Methyltransferase 2 (EHMT2/G9a). The EHMT2/G9a has been associated with Cancer, Alzheimer's, and aging and is considered an emerging drug target having no clinically passed inhibitor. Purposefully, we developed the ligand-based pharmacophore (Pharmacophore-L) based on the common features of known inhibitors and the structure-based pharmacophore (Pharmacophore-S) based on the interaction profile of available crystal structures. The Pharmacophore-L and Pharmacophore-S were subjected to multiple tiers of validations and utilized in combination for the screening of total 741543 compounds coming from multiple databases. Additional layers of stringency were applied in the screening process to test drug-likeness (using Lipinski's rule, Veber's rule, SMARTS and ADMET filtration), to rule out any toxicity (TOPKAT analysis). The interaction profiles, stabilities, and comparative analysis against the reference were carried out by flexible docking, MD simulation, and MM-GBSA analysis, which finally led to three leads as potential inhibitors of G9a.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2213346DOI Listing

Publication Analysis

Top Keywords

structure-based pharmacophore
12
ligand structure-based
8
pharmacophore screening
8
natural leads
8
lysine methyltransferase
8
methyltransferase ehmt2/g9a
8
integration ligand
4
pharmacophore
4
screening
4
screening identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!