A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Medically Assisted Model for Precise Segmentation of Osteosarcoma Nuclei on Pathological Images. | LitMetric

Osteosarcoma is the most common malignant bone tumor with a high degree of malignancy and misdiagnosis rates. Pathological images are crucial for its diagnosis. However, underdeveloped regions currently lack sufficient high-level pathologists, leading to uncertain diagnostic accuracy and efficiency. Existing research on pathological image segmentation often neglects the differences in staining styles and lack of data, without considering medical backgrounds. To alleviate the difficulty in diagnosing osteosarcoma in underdeveloped areas, an intelligent assisted diagnosis and treatment scheme for osteosarcoma pathological images, ENMViT, is proposed. ENMViT utilizes KIN to achieve normalization of mismatched images with limited GPU resources and uses traditional data enhancement methods, such as cleaning, cropping, mosaic, Laplacian sharpening, and other techniques to alleviate the issue of insufficient data. A multi-path semantic segmentation network combining Transformer and CNN is used to segment images, and the degree of edge offset in the spatial domain is introduced into the loss function. Finally, noise is filtered according to the size of the connecting domain. This article experimented on more than 2000 osteosarcoma pathological images from Central South University. The experimental results demonstrate that this scheme performs well in each stage of the osteosarcoma pathological image processing, and the segmentation results' IoU index is 9.4% higher than the comparative models, demonstrating its significant value in the medical industry.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3278303DOI Listing

Publication Analysis

Top Keywords

pathological images
16
osteosarcoma pathological
12
pathological image
8
osteosarcoma
6
pathological
6
images
6
medically assisted
4
assisted model
4
model precise
4
segmentation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!