Most patients with renal cancer will develop resistance to sorafenib therapy and will therefore exhibit disease progression. Effective therapies for these patients are extremely limited. Cyclooxygenase-2 (COX-2) promotes the malignant transformation of cancer cells and drug resistance. The potential of COX-2 inhibitor (celecoxib) administration in combination with sorafenib for the treatment of renal cancer is unclear. The present study demonstrated that sorafenib rapidly increased the expression of COX-2 in renal cancer cells, as determined using reverse transcription-quantitative PCR and western blotting. The results of the MTT assay and cell apoptosis experiment demonstrated that the cytotoxicity of sorafenib was also affected by COX-2 expression and celecoxib enhanced the cytotoxicity of sorafenib against renal cell carcinoma. Immunofluorescence analysis indicated that sorafenib induced the formation of stress granules (SGs) in renal cancer cells. In addition, COX-2 expression was associated with the formation of SGs, and SGs could capture and stabilize COX-2 mRNAs in renal cancer cells; this was confirmed using RNA fluorescence hybridization and an actinomycin D chase experiment. The protective effect of SGs was further demonstrated in cell experiments and xenograft tumor models. Thus, the present study indicated that the use of celecoxib may significantly enhance the sensitivity of renal cancer cells to sorafenib and improve efficacy. Sorafenib-induced SGs may contribute to critical events that promote COX-2 expression and survival in renal cancer cells. Therefore, the present study may provide novel ideas for the treatment of renal cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193378PMC
http://dx.doi.org/10.3892/ol.2023.13860DOI Listing

Publication Analysis

Top Keywords

renal cancer
36
cancer cells
28
cox-2 expression
12
renal
10
cancer
10
stress granules
8
sensitivity renal
8
sorafenib
8
cells sorafenib
8
treatment renal
8

Similar Publications

Enhancer RNA (eRNA) has emerged as a key player in cancer biology, influencing various aspects of tumor development and progression. In this study, we investigated the role of eRNAs in kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma. Leveraging high-throughput sequencing data and bioinformatics analysis, we identified differentially expressed eRNAs in KIRC and constructed eRNA-centric regulatory networks.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

Non-coding RNAs secreted by renal cancer include piR_004153 that promotes migration of mesenchymal stromal cells.

Cell Commun Signal

January 2025

Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.

Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.

View Article and Find Full Text PDF

MALDI-HiPLEX-IHC mass spectrometry imaging (MSI) represents a newly established workflow to map tens of antibodies linked to photocleavable mass tags (PC-MTs), which report the distribution of antigens in formalin-fixed paraffin-embedded (FFPE) tissue sections. While this highly multiplexed approach has previously been integrated with untargeted methods, the possibility of mapping target cell antigens and performing bottom-up spatial proteomics on the same tissue section has yet to be explored. This proof-of-concept study presents a novel workflow combining MALDI-HiPLEX-IHC with untargeted spatial proteomics to analyze a single FFPE tissue section, using clinical clear cell renal cell carcinoma (ccRCC) tissue as a model.

View Article and Find Full Text PDF

Background: Optimised use of kidney function information might improve cardiac risk prediction in noncardiac surgery.

Methods: In 35,815 patients from the VISION cohort study and 9219 patients from the POISE-2 trial who were ≥45 yr old and underwent nonurgent inpatient noncardiac surgery, we examined (by age and sex) the association between continuous nonlinear preoperative estimated glomerular filtration rate (eGFR) and the composite of myocardial injury after noncardiac surgery, nonfatal cardiac arrest, or death owing to a cardiac cause within 30 days after surgery. We estimated contributions of predictive information, C-statistic, and net benefit from eGFR and other common patient and surgical characteristics to large multivariable models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!