The apolipoprotein B mRNA editing enzyme catalytic polypeptide (APOBEC) mutagenesis is prevalent in esophageal squamous cell carcinoma (ESCC). However, the functional role of APOBEC mutagenesis has yet to be fully delineated. To address this, we collect matched multi-omics data of 169 ESCC patients and evaluate characteristics of immune infiltration using multiple bioinformatic approaches based on bulk and single-cell RNA sequencing (scRNA-seq) data and verified by functional assays. We find that APOBEC mutagenesis prolongs overall survival (OS) of ESCC patients. The reason for this outcome is probably due to high anti-tumor immune infiltration, immune checkpoints expression and immune related pathway enrichment, such as interferon (IFN) signaling, innate and adaptive immune system. The elevated AOBEC3A (A3A) activity paramountly contributes to the footprints of APOBEC mutagenesis and is first discovered to be transactivated by FOSL1. Mechanistically, upregulated exacerbates cytosolic double-stranded DNA (dsDNA) accumulation, thus stimulating cGAS-STING pathway. Simultaneously, is associated with immunotherapy response which is predicted by TIDE algorithm, validated in a clinical cohort and further confirmed in mouse models. These findings systematically elucidate the clinical relevance, immunological characteristics, prognostic value for immunotherapy and underlying mechanisms of APOBEC mutagenesis in ESCC, which demonstrate great potential in clinical utility to facilitate clinical decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197887PMC
http://dx.doi.org/10.7150/ijbs.83824DOI Listing

Publication Analysis

Top Keywords

apobec mutagenesis
24
immune infiltration
12
immunotherapy response
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8
escc patients
8
immune
6
apobec
6
mutagenesis
6

Similar Publications

CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).

View Article and Find Full Text PDF

Background: The HOXB13/IL17RB gene expression biomarker has been shown to predict response to adjuvant and extended endocrine therapy in patients with early-stage ER+ HER2- breast tumors. HOXB13 gene expression is the primary determinant driving the prognostic and endocrine treatment-predictive performance of the biomarker. Currently, there is limited data on HOXB13 expression in HER2+ and ER- breast cancers.

View Article and Find Full Text PDF
Article Synopsis
  • Host cell-encoded deaminases, like APOBEC and ADAR, inhibit SARS-CoV-2 replication by introducing mutations into the viral genome.
  • The SARS-CoV-2 nucleocapsid (N) protein interacts with these deaminases at stress granules to promote viral RNA mutagenesis, a process essential for blocking infection.
  • A specific residue (F17) in the N protein is crucial for this interaction, as mutations affecting this residue reduce the ability of N protein to localize with deaminases and subsequently lower viral RNA mutagenesis.
View Article and Find Full Text PDF

Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3).

View Article and Find Full Text PDF

Validation of the APOBEC3A-Mediated RNA Single Base Substitution Signature and Proposal of Novel APOBEC1, APOBEC3B, and APOBEC3G RNA Signatures.

J Mol Biol

December 2024

Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, USA; Norris Comprehensive Cancer Center, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA. Electronic address:

Mutational signature analysis gained significant attention for providing critical insights into the underlying mutational processes for various DNA single base substitution (SBS) signatures and their associations with different cancer types. Recently, RNA single base substitution (RNA-SBS) signatures were defined and described by decomposing RNA variants found in non-small cell lung cancer. Through statistical association, they attributed Apolipoprotein B mRNA Editing Enzyme, Catalytic Polypeptide 3A (APOBEC3A) mutagenesis to the RNA-SBS2 signature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!