This study aimed to evaluate the effectiveness of the embryonic injection of silver nanoparticles (SilNPs) on some productive traits and hepatic gene expression of lipopolysaccharide (LPS)-challenged broilers after a 42 d rearing period. 560 fertile eggs were randomly allocated to four groups and received either of the following treatments at d 7 of incubation, control (no injection), placebo (1 mL saline), SilNP20 (20 mg/kg silver nanoparticles), or SilNP40 (40 mg/kg silver nanoparticles). After the incubation, 320 hatchlings experienced a 42 d standard rearing period. Live body weight (LBW), feed intake (FI), and feed conversion ratio (FCR) were weekly recorded. At the end of the experiment, two birds from each replicate ( = 8 per treatment) were exposed to LPS intraperitoneal injection at 48, 24, and 12 h before slaughter time. They were also used for blood, intestinal, and microbial evaluations. The hepatic mRNA levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), transforming growth factor beta (TGF-β), and insulin-like growth factor I (IGF-I) were assessed at d 1 and 42 of the experiment. Adminstration of SiLNPs improved LBW, FI, and FCR and also enhanced liver and spleen weights ( < 0.05). SilNP20 birds had significantly lower bursa of Fabricius weight ( < 0.05). SilNP20 had lower total cholesterol levels than others. There was a significant difference ( < 0.05) between SliNP40 and SilNP20 in the ratio of villus height to crypt width. Compared to control groups, chicks of SilNP20, but not SilNP40, showed a significant increase in the relative expression of TNF-α, IL-6, TGF-β, and IFG-I genes at d 1. On d 42, however, both SilNP20 and SilNP40 had significantly higher TNF-α and TGF-β levels than both controls. Silver nanoparticles did not significantly affect the microflora of the ileum and cecum in the current study. In summary, SilNPs administration to chick embryos showed a long-term positive effect on their productive performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192475 | PMC |
http://dx.doi.org/10.1007/s13205-023-03627-7 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmacy, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou 221003, China.
To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia.
This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
This study reports the development of highly conductive and stretchable fibrous membranes based on PVDF/PAN conjugate electrospinning with embedded silver nanoparticles (AgNPs) for wearable sensing applications. The fabrication process integrated conjugate electrospinning of PVDF/PAN, selective dissolution of polyvinylpyrrolidone (PVP) to create porous networks, and uniform AgNP incorporation via adsorption-reduction. Systematic optimization revealed that 10 wt.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Prosthodontics, Medical University of Warsaw, 02-097 Warsaw, Poland.
Incorporating nanoparticles into denture materials shows promise for the prevention of denture-associated fungal infections. This study investigates the antifungal properties of acrylic modified with microwave-sintered ZnO-Ag nanoparticles. ZnO-Ag nanoparticles (1% and 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!