AI Article Synopsis

Article Abstract

Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196041PMC
http://dx.doi.org/10.3389/fnsys.2023.1176126DOI Listing

Publication Analysis

Top Keywords

basal ganglia
24
inferior olive
12
ganglia connection
8
connection inferior
8
potential basal
8
cerebellar learning
8
rabies virus
8
entopeduncular nucleus
8
influence olivary
8
ganglia
6

Similar Publications

Adaptive Cost-Benefit Control Fueled by Striatal Dopamine.

Annu Rev Neurosci

January 2025

Department of Cognitive and Psychological Sciences and Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA; email:

The twenty-first century has brought forth a deluge of theories and data shedding light on the neural mechanisms of motivated behavior. Much of this progress has focused on dopaminergic dynamics, including their signaling properties (how do they vary with expectations and outcomes?) and their downstream impacts in target regions (how do they affect learning and behavior?). In parallel, the basal ganglia have been elevated from their original implication in motoric function to a canonical circuit facilitating the initiation, invigoration, and selection of actions across levels of abstraction, from motor to cognitive operations.

View Article and Find Full Text PDF

We developed a reversed-phased high-performance liquid chromatographic method combining ultraviolet detection and integrated pulsed amperometric detection for the simultaneous quantification of dopamine, 5-hydroxyindolacetic acid, homovanillic acid, serotonin, 3,4-dihydroxyphenylacetic acid, norepinephrine and epinephrine. All target components were completely separated in a C18 column with isocratic elution of 5% acetonitrile solution containing 8 mM HClO4 and 0.20 mM 1-octanesulfonic acid as an ion pairing reagent.

View Article and Find Full Text PDF

Central amygdala NPBWR1 neurons facilitate social novelty seeking and new social interactions.

Sci Adv

January 2025

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan.

The formation of new social interactions is vital for social animals, but the underlying neural mechanisms remain poorly understood. We identified CeA neurons, a population in central amygdala expressing neuropeptide B/W receptor-1 (NPBWR1), that play a critical role in these interactions. CeA neurons were activated during encounters with unfamiliar, but not with familiar, mice.

View Article and Find Full Text PDF

Temporal lobe epilepsy with isolated amygdala enlargement: anatomo-electro-clinical features and long-term outcome.

J Neurol

January 2025

Epilepsy Unit - Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.

Background: Temporal lobe epilepsy with isolated amygdala enlargement (TLE-AE) still lacks a definite characterization and controversies exist.

Methods: We conducted a retrospective study identifying brain MRI scans with isolated AE between 2015 and 2021. We collected clinical and paraclinical data of patients with TLE-AE and evaluated the outcome.

View Article and Find Full Text PDF

Cognitive changes and brain structural abnormalities in female carriers of DMD pathogenic variants.

J Neurol

January 2025

Department of Neurology, School of Medical Sciences, University of Campinas-UNICAMP, Universitaria "Zeferino Vaz", Rua Tessália Vieira de Camargo, 126. Cidade, Campinas, SP, 13083-887, Brazil.

Background: Skeletal and cardiac muscle damage have been increasingly recognized in female carriers of DMD pathogenic variants (DMDc). Little is known about cognitive impairment in these women or whether they have structural brain damage.

Objective: To characterize the cognitive profile in a Brazilian cohort of DMDc and determine whether they have structural brain abnormalities using multimodal MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!