Increasing the concentration of an element in edible produce (i.e., biofortification) can mitigate the element deficiency in humans. Sprouts are small but popular part of healthy diets providing vitamins and essential elements throughout the year. Element composition of sprouts can easily be amended, e.g., by soaking the grains in element-rich solution before germination (grain-priming). In addition, pre-treatment of grains to improve element translocation from the solution into the grain may further enhance the element concentration in the sprout. Cold plasma technique could provide such solution, as it increases wettability and water uptake of grains. Grains of common buckwheat ( Moench) were pre-treated/ untreated with cold plasma and soaked in ZnCl solution/pure water. Germination tests, α-amylase activity, grain hydrophilic properties and water uptake were assessed. Element composition of grain tissues and of sprouts was assessed by micro-particle-induced-X-ray emission and X-ray fluorescence spectroscopy, respectively. Grain-priming increased Zn concentration in shoots of common buckwheat sprouts more than five-times, namely from 79 to 423 mg Zn kg dry weight. Cold plasma treatment increased grain wettability and water uptake into the grain. However, cold plasma pre-treatment followed by grain-priming with ZnCl did not increase Zn concentration in different grain tissues or in the sprouts more than the priming alone, but rather decreased the Zn concentration in sprout shoots (average ± standard error: 216 ± 6.13 and 174 ± 7.57 mg Zn kg dry weight, respectively). When the fresh weight portion of whole sprouts (i.e., of roots and shoots) was considered, comparable average requirements of Zn, namely 24.5 % and 35 % for adult men and women would be satisfied by consuming cold plasma pre-treated and not pre-treated grains. Potential advantages of cold plasma pre-treatment need to be tested further, mainly to optimize the duration of soaking required to produce Zn-enriched sprouts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196170 | PMC |
http://dx.doi.org/10.3389/fnut.2023.1151101 | DOI Listing |
Food Chem
December 2024
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield Dublin 4, Ireland. Electronic address:
Graphene oxide (GO), renowned for its two-dimensional structure and exceptional fluorescence quenching capabilities, is a preferred choice for the construction of fluorescence biosensors. As the sensitivity demands for these sensors escalate, enhancing the fluorescence quenching performance of GO and reducing background fluorescence become paramount to optimize the sensor sensitivity. In this study, the use of cold plasma (CP) treatment with glucose solution as a reducing agent to refine GO into reduced graphene oxide (r-GO) with optimal fluorescence quenching abilities was explored.
View Article and Find Full Text PDFBiopreserv Biobank
December 2024
Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Science, Urmia, Iran.
Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm.
View Article and Find Full Text PDFCold atmospheric pressure plasma (CAPP) comprises an ensemble of ionized gas, neutral particles, and/or reactive species. Electricity is frequently used to produce CAPP via a variety of techniques, including plasma jets, corona discharges, dielectric barrier discharges, and glow discharges. The type and flow rates of the carrier gas(es), temperature, pressure, and vacuum can all be altered to control the desired properties of the CAPP.
View Article and Find Full Text PDFSci Total Environ
December 2024
Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia.
Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited.
View Article and Find Full Text PDFJ Extra Corpor Technol
December 2024
Physiology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran.
Introduction: Myocardial protection with cardioplegia is a crucial approach to mitigate myocardial damage during coronary bypass grafting surgery (CABG) with cardiopulmonary bypass (CPB). The major component of the del Nido cardioplegia solution, Plasma-Lyte A, is difficult to obtain in Iran due to high cost. The objective of the current study was to study if the lactated Ringer's solution as the base for del Nido solution (LR DN) usage is a viable option as a substitute for Plasma-Lyte A in adult patients presenting for CABG surgery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!