Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood.
Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression.
Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192733 | PMC |
http://dx.doi.org/10.3389/fimmu.2023.1168635 | DOI Listing |
Lasers Med Sci
January 2025
Department of Physics, Shabestar Branch, Islamic Azad University, Shabestar, Iran.
In laser safety eyewear, due to the lack of complete blocking of ultraviolet and infrared rays, we proposed a structure based on one-dimensional multilayer composed of several layers of silicon dioxide and zirconium dioxide materials alternately behind polycarbonate lens. It is find out that the acceptance angle range to the photonic crystal is 0 to 39°. This incident angle range corresponds to the band gap of the photonic crystal.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China. Electronic address:
Diabetes is an extremely costly disease, one-third of which are attributed to the management of diabetic foot disease including chronic, non-healing, diabetic foot ulcers (DFUs). Therefore, much effort is needed to understand the pathogenesis of DFUs and novel therapeutics. We utilized exosome staining to confirm the interaction between fibroblast-derived exosomes and macrophages.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Centre for Hyperpolarization in Magnetic Resonance, University of York, Heslington YO10 5NY, United Kingdom.
This research uses perfluorocarbons (PFCs) as effective alternatives to traditional toxic solvents in reversible -hydrogen-induced polarization (PHIP) for NMR signal enhancement. Hydrogen solubility in PFCs is shown here to be an order of magnitude higher than in typical organic solvents by determination of Henry's constants. We demonstrate how this high H solubility enables the PFCs to deliver substantial polarization transfer from -hydrogen, achieving up to 2400-fold signal gains for H NMR detection and 67,000-fold (22% polarization) for N NMR detection at 9.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.
Phys Rev Lett
December 2024
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Distinguishing whether a system supports alternate low-energy (locally stable) states-stable (true vacuum) versus metastable (false vacuum)-by direct observation can be difficult when the lifetime of the state is very long but otherwise unknown. Here we demonstrate, in a tractable model system, that there are physical phenomena on much shorter timescales that can diagnose the difference. Specifically, we study the time evolution of the magnetization following a quench in the tilted quantum Ising model, and show that its magnitude spectrum is an effective diagnostic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!