Building synthetic chromosomes from natural DNA.

bioRxiv

Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.

Published: May 2023

De novo chromosome synthesis is costly and time-consuming, limiting its use in research and biotechnology. Building synthetic chromosomes from natural components is an unexplored alternative with many potential applications. In this paper, we report CReATiNG (Cloning, Reprogramming, and Assembling Tiled Natural Genomic DNA), a method for constructing synthetic chromosomes from natural components in yeast. CReATiNG entails cloning segments of natural chromosomes and then programmably assembling them into synthetic chromosomes that can replace the native chromosomes in cells. We used CReATiNG to synthetically recombine chromosomes between strains and species, to modify chromosome structure, and to delete many linked, non-adjacent regions totaling 39% of a chromosome. The multiplex deletion experiment revealed that CReATiNG also enables recovery from flaws in synthetic chromosome design via recombination between a synthetic chromosome and its native counterpart. CReATiNG facilitates the application of chromosome synthesis to diverse biological problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197684PMC
http://dx.doi.org/10.1101/2023.05.09.540074DOI Listing

Publication Analysis

Top Keywords

synthetic chromosomes
16
chromosomes natural
12
building synthetic
8
chromosome synthesis
8
natural components
8
synthetic chromosome
8
chromosomes
7
chromosome
6
natural
5
synthetic
5

Similar Publications

Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone.

View Article and Find Full Text PDF

Can a plant biologist fix a thermostat?

New Phytol

January 2025

Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037-100210, USA.

The shift to reductionist biology at the dawn of the genome era yielded a 'parts list' of plant genes and a nascent understanding of complex biological processes. Today, with the genomics era in full swing, advances in high-definition genomics enabled precise temporal and spatial analyses of biological systems down to the single-cell level. These insights, coupled with artificial intelligence-driven in silico design, are propelling the development of the first synthetic plants.

View Article and Find Full Text PDF

A noncanonical role of roX RNAs in autosomal epigenetic repression.

Nat Commun

January 2025

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Article Synopsis
  • roX RNAs are essential for male development in Drosophila, and their absence leads to male lethality during late larval stages.
  • They are known for their role in balancing X-linked gene expression but have shown to also target autosomal genes, which had not been extensively studied before.
  • The research highlights that roX RNAs function as both activators of X-linked genes and repressors of autosomal genes through their interactions with specific protein complexes, revealing a complex role in gene regulation.
View Article and Find Full Text PDF

Descart: a method for detecting spatial chromatin accessibility patterns with inter-cellular correlations.

Genome Biol

December 2024

Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China.

Spatial epigenomic technologies enable simultaneous capture of spatial location and chromatin accessibility of cells within tissue slices. Identifying peaks that display spatial variation and cellular heterogeneity is the key analytic task for characterizing the spatial chromatin accessibility landscape of complex tissues. Here, we propose an efficient and iterative model, Descart, for spatially variable peaks identification based on the graph of inter-cellular correlations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!