Numerous eukaryotic toxins that accumulate in geophytic plants are valuable in the clinic, yet their biosynthetic pathways have remained elusive. A lead example is the >150 Amaryllidaceae alkaloids (AmAs) including galantamine, an FDA-approved treatment for Alzheimer's disease. We show that while AmAs accumulate to high levels in many tissues in daffodils, biosynthesis is localized to nascent, growing tissue at the base of leaves. A similar trend is found for the production of steroidal alkaloids (e.g. cyclopamine) in corn lily. This model of active biosynthesis enabled elucidation of a complete set of biosynthetic genes for the production of AmAs. Taken together, our work sheds light on the developmental and enzymatic logic of diverse alkaloid biosynthesis in daffodil. More broadly, it suggests a paradigm for biosynthesis regulation in monocot geophytes where plants are protected from herbivory through active charging of newly formed cells with eukaryotic toxins that persist as aboveground tissue develops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197729PMC
http://dx.doi.org/10.1101/2023.05.12.540595DOI Listing

Publication Analysis

Top Keywords

eukaryotic toxins
12
biosynthetic pathways
8
monocot geophytes
8
developmental gradient
4
gradient reveals
4
reveals biosynthetic
4
pathways eukaryotic
4
toxins monocot
4
geophytes numerous
4
numerous eukaryotic
4

Similar Publications

The emergence and prevalence of hypervirulent Klebsiella pneumoniae (hvKP) have proposed a great challenge to control this infection. Therefore, exploring some new drugs or strategies for treating hvKP infection is an urgent issue for scientific researchers. In the present study, the clpV gene deletion strain of hvKP (ΔclpV-hvKP) was constructed using CRISPR-Cas9 technology, and the biological characteristics of ΔclpV-hvKP were investigated to explore the new targets for controlling this pathogen.

View Article and Find Full Text PDF

Although alveolar hyperoxia exacerbates lung injury, clinical studies have failed to demonstrate the beneficial effects of lowering the fraction of inspired oxygen (FO) in patients with acute respiratory distress syndrome (ARDS). Atelectasis, which is commonly observed in ARDS, not only leads to hypoxemia but also contributes to lung injury through hypoxia-induced alveolar tissue inflammation. Therefore, it is possible that excessively low FO may enhance hypoxia-induced inflammation in atelectasis, and raising FO to an appropriate level may be a reasonable strategy for its mitigation.

View Article and Find Full Text PDF

Activation of three targets by a TAL effector confers susceptibility to bacterial blight of cotton.

Nat Commun

January 2025

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.

Bacterial transcription activator-like effectors (TALEs) promote pathogenicity by activating host susceptibility (S) genes. To understand the pathogenicity and host adaptation of Xanthomonas citri pv. malvacearum (Xcm), we assemble the genome and the TALE repertoire of three recent Xcm Texas isolates.

View Article and Find Full Text PDF

This study evaluates the effects of liraglutide on albuminuria, oxidative stress, and inflammation in type 2 diabetes (T2D) patients with different urinary albumin-to-creatinine ratio (UACR) categories. We enrolled 107 patients with T2D who were initiating liraglutide for glycemic control. Patients were categorized into 3 groups: group I (UACR < 30 mg/g); group II (30 mg/g ≤ UACR ≤ 300 mg/g); group III (UACR > 300 mg/g).

View Article and Find Full Text PDF

Studies have shown that uremia, renal failure and heart failure (HF) are closely related. However, whether this association reflects a causal effect is still unclear. The aim of this study was to evaluate the causal effect of uremic metabolites or toxins on HF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!