In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During neuronal transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of serotonergic signaling is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective-serotonin reuptake inhibitors (SSRIs). S-palmitoylation is an increasingly recognized dynamic post-translational modification, regulating protein kinetics, trafficking, and localization patterns upon physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP) we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT V , without changes in K or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and loss of total SERT protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197645 | PMC |
http://dx.doi.org/10.1101/2023.05.09.540092 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Sleep Medicine and Metabolic Disorder, Medical University of Lodz, 6/8 Mazowiecka, 92-215 Lodz, Poland.
: Serotonin and the serotonin transporter (SERT) may have a multifaceted, but not fully understood, role in obstructive sleep apnea (OSA) and its impact on mental health in this group of patients. This study aimed to investigate changes in serotonin and the serotonin transporter (SERT) and their association with depressive and insomnia symptoms. : This study included 76 participants (OSA group: = 36, control group (CG): = 40) who underwent polysomnography, while venous blood samples (evening and morning) were analyzed for serotonin and the SERT using ELISA.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Division of Pharmacoengineering and Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, 125 Mason Farm Rd. Chapel Hill, NC 27599, USA.
Whole genome codon compression-the reassignment of all instances of a specific codon to synonymous codons-can generate organisms capable of tolerating knockout of otherwise essential transfer RNAs (tRNAs). As a result, such knockout strains enable numerous unique applications, such as high-efficiency production of DNA encoding extremely toxic genes or non-canonical proteins. However, achieving stringent control over protein expression in these organisms remains challenging, particularly with proteins where incomplete repression results in deleterious phenotypes.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
Background: Durazz. is one of the most popular herbs used for depression treatment, but the molecular basis for its mechanism of action has not been fully addressed. Previously, we isolated and identified two lignan glycoside derivatives that were shown to noncompetitively inhibit serotonin transporter (SERT) activity but with a relatively low inhibitory potency compared with those of conventional antidepressants.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
School of Biological Sciences, Victoria University of Wellington Kelburn, Parade, 6012, Wellington, New Zealand.
Neuropsychiatric and neurodevelopmental disorders are complex conditions that arise from a variety of interacting genetic and environmental factors. Among these factors, altered serotonergic signalling and mitochondrial dysfunction are strongly implicated, with a growing body of evidence to suggesting that serotonergic signalling is an important regulator of mitochondrial biogenesis. The serotonin transporter (SERT) functions to regulate synaptic 5-HT, and human allelic variants of the serotonin reuptake transporter-linked polymorphic region (5-HTTLPR) are associated with reduced SERT expression and increased susceptibility for developing neuropsychiatric disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!