Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198117 | PMC |
http://dx.doi.org/10.12998/wjcc.v11.i12.2604 | DOI Listing |
Sci Rep
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates.
View Article and Find Full Text PDFJBMR Plus
February 2025
INSERM UMR 1033, Univ Lyon, Université Claude Bernard Lyon 1, F-69008 Lyon, France.
OI, or bone brittle disease, is characterized by increased mineralization of bone matrix independently of clinical severity. So, a beneficial effect of antiresorptive treatments such as bisphosphonates (BP) is questionable. We aim to compare the bone matrix characteristics before and after BP pamidronate (PAM).
View Article and Find Full Text PDFElife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, U.O.C. Pediatric Dentistry Unit, 00161 Rome, Italy.
: The orthodontic management of pediatric patients with rare diseases, such as Ectodermal Dysplasia (ED) and Osteogenesis Imperfecta (OI), requires complex protocols due to dental anomalies in both the number and structure of teeth. These conditions necessitate a departure from traditional orthodontic approaches, as skeletal anchoring is often required because of these anomalies. A patient with ED, characterized by hypodontia and malformed teeth, presented with insufficient natural teeth for anchorage.
View Article and Find Full Text PDFCells
December 2024
Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy.
Zebrafish () have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!