Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay.

Mater Today Bio

Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.

Published: June 2023

Gold nanozymes (GNZs) have been widely used in biosensing and bioassay due to their interesting catalytic activities that enable the substitution of natural enzyme. This review explains different catalytic activities of GNZs that can be achieved by applying different modifications to their surface. The role of Gold nanoparticles (GNPs) in mimicking oxidoreductase, helicase, phosphatase were introduced. Moreover, the effect of surface properties and modifications on each catalytic activity was thoroughly discussed. The application of GNZs in biosensing and bioassay was classified in five categories based on the combination of the enzyme like activities and enhancing/inhibition of the catalytic activities in presence of the target analyte/s that is realized by proper surface modification engineering. These categories include catalytic activity enhancer, reversible catalytic activity inhibitor, binding selectivity enhancer, agglomeration base, and multienzyme like activity, which are explained and exemplified in this review. It also gives examples of those modifications that enable the application of GNZs for biosensing and bioassays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199192PMC
http://dx.doi.org/10.1016/j.mtbio.2023.100656DOI Listing

Publication Analysis

Top Keywords

biosensing bioassay
12
gnzs biosensing
12
catalytic activities
12
catalytic activity
12
surface modification
8
application gnzs
8
catalytic
6
surface
4
modification strategies
4
strategies functional
4

Similar Publications

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.

View Article and Find Full Text PDF

Biotinylation-based lateral flow assays for pathogenic and total bacteria detection.

Anal Chim Acta

February 2025

Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, PR China. Electronic address:

Background: It is highly desirable to concurrently evaluate both pathogenic and total bacteria in water and food environments. As a point-of-care platform for biochemical tests, lateral flow assay (LFA) has been widely used for pathogenic bacteria due to its portability and fast time of outcome. However, traditional LFA was unable to detect total bacteria due to the lack of a universal antibody that could bind all the bacteria.

View Article and Find Full Text PDF

A High-Efficiency Autocatalysis-Oriented Cascade Circuit via Reciprocal Hug-Amplification for Assay-to-Treat Application.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3).

View Article and Find Full Text PDF

EGFP/RFP-based FRET sensors for botulinum neurotoxin A biological activity detection and methodological validation.

Anal Chim Acta

February 2025

Joint Drug Development and Innovation Centre for Neurological Disorders of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu, 730000, PR China. Electronic address:

Background: Botulinum neurotoxin type A (BoNT/A) is the most potent and prevalent neurotoxin known to cause botulism, and is also widely used in medical and cosmetic applications. The detection of BoNT/A is of great significance for botulism diagnosis and drug potency determination. Currently, the mouse bioassay (MBA) has long been the gold standard method but has disadvantages of ethical concerns, long testing duration, and high costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!