Emerging findings propose that the pathophysiology of migraine may be associated with dysfunctional metabolic mechanisms. Recent findings suggest that migraine attacks are a response to the cerebral energy deficit, and ingestion of ketone bodies stabilizes the generation of a migraine attack. Based on these findings, ketone body supplementation is postulated as a prophylactic treatment approach to restore cerebral metabolism deficiency. Metabolic markers are unexplored after exogenous ketone body supplementation in episodic migraineurs. Therefore, the present single-arm uncontrolled explorative analysis evaluated blood ketone body and glucose concentration after short and long-term 6 g exogenous DL-Mg-Ca-beta-hydroxybutyrate (DL-βHB) supplementation. The presented data are part of the MigraKet randomized-control cross-over clinical trial of 41 episodic migraineurs (Number NCT03132233). Patients were given a single dose of 6 g DL-βHB. Ketone body and glucose blood concentration were assessed before intake, 20, and 40 min after DL-βHB intake. Ketone body, glucose concentration and glycated hemoglobin values were evaluated after 12 weeks of 18 g DL-βHB ingestion (total dose), taken three times daily (6g/dose; 3x/day). Linear models explored the association between the ketone body and glucose levels. Ketone body concentration increased within-group to a mean of 0.46 (0.30) mmol/L after 40 min post- DL-βHB supplementation [estimate = 0.24 mmol/L, CI = (0.20.0.27), < 0.01]. This within-group increase of ketone body concentration did not change after repeated daily intake of DL-βHB supplementation over 12 weeks [estimate = 0.00 mmol/L, CI = (-0.03.0.04), = 0.794]. DL-βHB intake significantly reduced blood glucose concentration within-group from a mean baseline of 4.91 (0.42) mmol/L to 4.75 (0.47) mmol/L 40 min post-DL-βHB supplementation [estimate = -0.16 mmol/L, CI = (-0.15, 0.03), < 0.01]. Repeated DL-βHB supplementation for 12 weeks showed no change within-group in acute ketone bodies concentration [estimate = 0.00 mmol/L, CI = (-0.03.0.04), = 0.794] and in the HbA1c value [estimate = 0.02, CI = (-0.07.0.11), = 0.69]. A single dose of 6 g DL-βHB significantly elevated blood ketone bodies and decreased blood glucose concentration within-group in episodic migraineurs. Long-term DL-βHB supplementation for 12 weeks showed no effect within-group on acute ketone body concentration and had not impact on HbA1c. The elevation of the ketone body concentration was moderate, indicating that nutritional ketosis was not reached. Therefore, a dose higher than 6 g of DL-βHB is required to reach the nutritional level of ketosis. ClinicalTrials.gov Identifier: NCT03132233.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192563PMC
http://dx.doi.org/10.3389/fphar.2023.1172483DOI Listing

Publication Analysis

Top Keywords

ketone body
40
dl-βhb supplementation
20
body glucose
16
glucose concentration
16
body concentration
16
ketone
13
ketone bodies
12
episodic migraineurs
12
6 g dl-βhb
12
supplementation 12 weeks
12

Similar Publications

Induction of Erythropoietin by dietary Medium-Chain Triacylglycerol in Humans.

Am J Physiol Endocrinol Metab

January 2025

The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.

Erythropoietin (EPO) is pivotal in regulating red blood cell (erythrocyte) concentrations and is primarily synthesized in the kidney. Recent research has unveiled a possible link between elevated circulating concentrations of ketone bodies (KB) and circulating EPO concentrations, however, it is not known whether nutritionally induced endogenous ketogenesis can be a stimulus to induce EPO in humans. Therefore, this study aimed to assess whether acute and chronic intake of medium-chain fatty acid (MCFA)-containing triacylglycerol (MCT), which rapidly enhances endogenous circulating KB, would elevate circulating EPO concentrations in humans, as indicated by prior work with exogenous KB administration.

View Article and Find Full Text PDF

Background: There is a lack of data on the validation and diagnostic performance of the Freestyle Optium Neo-H (Freestyle) and Centrivet GK (Centrivet) devices for the diagnosis of hypoglycaemia, hyperglycaemia and hyperketonaemia in goats.

Objectives: The aim of the present study was to validate the Freestyle and Centrivet for the analysis of whole blood beta-hydroxybutyric acid (BHBA) and to validate the Freestyle for the analysis of whole blood glucose concentrations using the reference method (RM) in goat blood collected from the jugular and ear veins.

Methods: Venous blood samples were utilised to assess glucose and BHBA concentrations using the Freestyle, Centrivet and RM.

View Article and Find Full Text PDF

Background: Elevated BHB levels are hypothesized to influence hepatic antioxidant enzyme expression and activity, contributing to oxidative response. However, the impact of BHB between 0.8 and 1.

View Article and Find Full Text PDF

Application and Mechanism of Action of a Ketogenic Diet in Antiepileptic Therapy.

ACS Chem Neurosci

January 2025

Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China.

Epilepsy is a chronic neurological disorder caused by abnormal discharges of neurons in the brain, which seriously affects the quality of life of patients. Although there are various drug treatments available, many epilepsy patients still experience seizures with the effect of drugs and develop refractory epilepsy. The ketogenic diet can treat drug-refractory epilepsy by regulating the body's metabolism and can enhance the quality of life by improving their cognition, behavior, and sleep quality.

View Article and Find Full Text PDF

Effect of ketosis induced by on delayed-onset muscle soreness, inflammation and redox status: a randomized, open-label, crossover pilot study.

J Sports Med Phys Fitness

January 2025

Department of Sports and Welfare Science, School of Physical Education, Sendai University, Shibata, Japan.

Background: Previous studies show that ketosis caused by the consumption of low-carbohydrate diets improves cognitive functions and that ketogenic diets can be used to treat epilepsy. In vivo and in vitro experiments have shown that ketosis regulates pain, inflammation, and oxidative stress. Thus, we investigated the effects of ketosis induced by a low-carbohydrate diet on muscle soreness, inflammation, and redox status in human subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!