Nanoparticle applications are becoming increasingly popular in fields such as photonics, catalysis, magnetics, biotechnology, manufacturing of cosmetics, pharmaceuticals, and medicines. There is still a huge pile of undermining information about the potential toxicity of these products to humans, which can be encountered by neuroprotective antioxidants and anti-inflammatory compounds. Nanoparticles can be administered using a variety of methods, including oronasal, topical applications, and enteral and parenteral routes of administration. There are different properties of these nanomaterials that characterize different pathways. Crossing of the blood-brain barrier, a direct sensory nerve-to-brain pathway whose barriers are bypassed, these checks otherwise prevent the nanoparticles from entering the brain. This inflicts damage to sensory neurons and receptors by nanoparticles that lead to neurotoxicity of the central nervous system. A number of routes make nanoparticles able to penetrate through the skin. Exposure by various routes to these nanoparticles can result in oxidative stress, and immune suppression triggers inflammatory cascades and genome-level mutations after they are introduced into the body. To out-power, these complications, plant-based antioxidants, essential oils, and dietary supplements can be put into use. Direct nanoparticle transport pathways from sensory nerves to the brain via blood have been studied grossly. Recent findings regarding the direct pathways through which nanoparticles cross the blood-brain barriers, how nanoparticles elicit different responses on sensory receptors and nerves, how they cause central neurotoxicity and neurodegeneration through sensory nerve routes, and the possible mechanisms that outcast these effects are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192712PMC
http://dx.doi.org/10.3389/fnins.2023.1127460DOI Listing

Publication Analysis

Top Keywords

routes nanoparticles
8
nanoparticles
7
sensory
5
insights nanoparticles-induced
4
nanoparticles-induced neurotoxicity
4
neurotoxicity cope
4
cope strategies
4
strategies nanoparticle
4
nanoparticle applications
4
applications increasingly
4

Similar Publications

Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.

View Article and Find Full Text PDF

The medical and cosmetic industries have developed in recent years, there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications.

View Article and Find Full Text PDF

The increasing demand for magnetic iron oxide nanoparticles (IONPs) in biomedicine necessitates efficient and scalable production methods. Thermal decomposition offers excellent tailoring of the particle properties but its discontinuous batch-operation is restricting scale-up and industrial application. To overcome these challenges, several studies have demonstrated semi-continuous thermal decomposition by slowly injecting the precursor, though only half of them produce magnetite IONPs and even fewer use iron oleate precursors.

View Article and Find Full Text PDF

Effect of mRNA formulated with lipid nanoparticles on the transcriptomic and epigenetic profiles of F4/80 liver-associated macrophages.

Sci Rep

January 2025

Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

Delivery of an mRNA formulated with lipid nanoparticles (LNPs) induces robust humoral and cell-mediated branches of the immune response. Depending on the LNP formula, mRNA encoding proteins can be detected in the liver upon intramuscular administration of mRNA/LNP in mice. This study investigated the impact of mRNA/LNP administration on liver-associated macrophages at the transcriptomic and epigenetic levels in a mouse model.

View Article and Find Full Text PDF

The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a reduction in systemic adverse effects compared to other routes, such as oral or intravenous. Nevertheless, the pulmonary administration of drugs is challenging, as the respiratory system tries to eliminate inhaled particles, being the main responsible mucociliary escalator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!