Background: The treatment of Chiari malformations generally consists of posterior fossa decompression. C1 laminectomy is required in selected cases. However, cases of iatrogenic anterior arch fractures at C1 without high-energy trauma have been reported. Developing theoretical models of atlas C1 bones that have undergone a laminectomy can help researchers identify the regions where fractures may occur as a result of sudden loads.
Methods: In this study, we created a detailed three-dimensional solid finite element model of the human atlas bone (C1) using geometric data. The loadings of the laminectomy dimension were evaluated on the basis of three groups. Group I comprised atlas bones that had not undergone a laminectomy. For Group II, the lateral border of the laminectomy was determined as the projection of the lateral mass medial border on the lamina. For Group III, the bilateral sulcus arteriosus was determined as the border for the lateral border of the laminectomy. The analysis results, which are in good agreement with those of previous reports, showed high concentrations of localized stress in the anterior and posterior arches of the atlas bone.
Results: The analysis results showed that the stress increased in the laminectomy models. The maximum stress observed was consistent with the clinical observations of fracture sites in previous studies.
Conclusion: In the treatment of patients with Chiari malformations, C1 laminectomy is often required. The width of this laminectomy can lead to iatrogenic anterior arch fractures. This is the first study to evaluate C1 laminectomy width using finite element modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192479 | PMC |
http://dx.doi.org/10.1007/s43465-023-00870-1 | DOI Listing |
PLoS One
January 2025
Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji University, Shanghai, China.
Highway guardrails are critical safety infrastructure along roadways, designed to redirect vehicles back into their lanes and facilitate a gradual deceleration to a complete stop. Traditional highway steel guardrails exhibit significant limitations, including inadequate energy absorption, susceptibility to corrosion, and an increased risk of vehicles leaving the roadway during severe collisions. Furthermore, the production and transportation of these guardrails contribute to substantial carbon emissions and environmental pollution.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna 1060, Austria.
Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.
View Article and Find Full Text PDFDent Traumatol
January 2025
Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, Delhi, India.
Background/aims: Preformed zirconia crowns have emerged as the preferred choice for restoring damaged primary incisors. However, they differ from natural teeth in their biophysical properties and can potentially alter the overall response of crowned teeth to a traumatic load. This in silico study aimed to compare the response of three different traumatic loading conditions for the (i) natural (M1) and (ii) zirconia-restored tooth models (M2) models.
View Article and Find Full Text PDFAnat Rec (Hoboken)
January 2025
School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK.
Determining the ecology of fossil species presents considerable challenges due to the often fragmentary preservation of specimens. The mammaliaform Hadrocodium wui from the Jurassic of China is known only from the cranium and mandible but may have had a fossorial lifestyle. It shares morphological similarities with talpid moles and soricid shrews and is closely related to other fossorial mammaliaforms.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS) and Human Anatomy Resource Centre (HARC), Education Directorate, University of Liverpool, Liverpool, UK.
The importance of interactions between neighbouring rapidly growing tissues of the head during development is recognised, yet this competition for space remains incompletely understood. The developing structures likely interact through a variety of mechanisms, including directly genetically programmed growth, and are mediated via physiological signalling that can be triggered by structural interactions. In this study, we aimed to investigate a different but related potential mechanism, that of simple mechanical plastic deformation of neighbouring structures of the head in response to soft tissue expansion during human postnatal ontogeny.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!